• Title/Summary/Keyword: Protein candidate

Search Result 708, Processing Time 0.022 seconds

Fibrinolytic Activity and Antioxidant Effects of the Newly Developed Agabean Fermented of Product Produced by Bacillus sp. (Bacillus sp.에 의하여 발효된 신품종 아가콩 발효 산물의 혈전 용해 활성 및 항산화 효과)

  • Kim, Sung-Ryeal;Kim, Min-Jeong;Lee, Hye-Hyeon;Seo, Min-Jeong;Kang, Byoung-Won;Joo, Woo-Hong;Park, Jeong-Uck;Rhu, Eun-Ju;Hwang, Young-Hyun;Jeong, Yong-Kee
    • Journal of Life Science
    • /
    • v.20 no.11
    • /
    • pp.1711-1717
    • /
    • 2010
  • In this study, fibrinolytic activities of fermented yellow agabean (FYA) and black agabean (FBA), and the antioxidation efficiencies of 70% ethanol extract of fermented yellow agabean (FYAE) and black agabean (FBAE) were investigated by selecting Bacillus sp. sm26 strain. Fibrinolytic activities of FYA and FBA were $6.38{\pm}0.5$ and $6.83{\pm}0.5\;U/ml$, which were 1.3 and 1.4 times higher than that of FSB, respectively. With regard to total phenolic contents, FYAE and FBAE were $3.40{\pm}0.44\;mg/g$ and $2.45{\pm}0.20\;mg/g$ respectively, suggesting that their contents were about twice as high as that of fermented soybean extract (FSBE) used as a control. In comparison with FSBE, total protein and sugar contents of FYAE were $0.56{\pm}0.11$ and $2.41{\pm}0.48\;mg/g$, respectively, and those of FBAE were $0.39{\pm}0.12$ and $2.72{\pm}0.63\;mg/g$, respectively. This result suggests that FYAE was 4.7 and 1.7 times higher than FSBE, respectively. The DPPH radical scavenging activity of FBAE was 79% at 1 mg/ml, which was highest among the fermented bean extracts, and was twice as high as FSBE in regards to activity. In addition, FBAE exhibited the highest reducing power at 1 mg/ml, which was higher than FSBE by two-fold. With regard to lipid peroxidation, FBAE and FYAE were 93% and 80% at 1 mg/ml, which were 3 and 2.5 times higher than FSBE, respectively. Of note, the hydrogen peroxide scavenging activities of FBAE and FYAE were 82% and 54% at 1 mg/ml, offering activity that was 4 and 2.5 times higher than FSBE, respectively. Based on these results, the fibrinolytic activity and antioxidation efficiency of the fermented agabeans were significantly higher than other soybeans. Therefore, these studies may suggest that the functional agabeans can be a potential candidate for a natural functional food.

Anti-inflammatory Activity of Peel Extracts in Color-fleshed Potatoes (컬러감자외피 추출물의 항염활성)

  • Nam, Jung-Hwan;Jeong, Jin-Cheol;Kwon, Oh-Keun;Hong, Su-Young;Kim, Su-Jeong;Soh, Hwang-Bae;Lee, Jong-Nam;Lee, Kyung-Tea;Park, Hee-Jhun
    • Korean Journal of Plant Resources
    • /
    • v.26 no.5
    • /
    • pp.533-538
    • /
    • 2013
  • Potatoes were first introduced outside the Andes region four centuries ago, and have become an integral part of much of the world's food. Potatoes were first introduced into Europe in the 16th century and Korea in the early 19th century. In the nutritional aspects, potatoes contain abundant vitamins and minerals, as well as an assortment of phytochemicals such as carotenoids and natural phenols. Chlorogenic acid constitutes up to 90% of potato natural phenols. Due to the high content of potato functional compounds, it has known that potatoes are effective in the prevention of various human diseases. Recently, color-fleshed potatoes 'Hongyoung' and 'Jayoung' were developed by RDA, and it has reported that they have high content of anthocyanin. Additionally they show higher radical scavenging activity compared to white or yellow fleshed potatoes. So it will be expected that the consumption of color-fleshed potatoes grandually increase by pre-peeled potatoes and color potato chips. This study was conducted to enhance the peel of color-fleshed potatoes utilization and to determine the biological activity of peel of color-fleshed potatoes extract. The anti-inflammatory effects on ethanol extract and its solvent fraction were also evaluated. The anti-inflammatory activities of $CHCl_3$ fraction was evaluated for inhibitory activities against lipopolysacchride(LPS) induced nitric oxide(NO) and prostaglandin $E_2(PGE_2)$ production as well as inducible nitric oxide synthase(iNOS) and cyclo oxygenase-2(COX-2) protein expressions in RAW264.7 cell lines. The fraction inhibitory activity for both tests with $IC_{50}$ values showed in the ranges of $25{\sim}50{\mu}g/ml$. This result revealed that $CHCl_3$ fraction of Jayoung's peel is expected to be good candidate for development into source of anti-inflammatory agent.

Effect of Nogjungtang (Korean Traditional Deer Decoction) on Growth, Feed Efficiency and Hematologic Index in Sprague-Dawley Rats (녹중탕이 흰쥐의 성장, 식이효율 및 혈액형상에 미치는 효과)

  • Sung, Ha-Guyu
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.8
    • /
    • pp.1164-1168
    • /
    • 2005
  • Korean traditional deer decoction (Nogjungtang), composed of oriental herbs and almost deer parts, has been used as an important resource for human health. For basic studying on Nogjungtang, this experiment was conducted to evaluate nutritional effects of Nogjungtang, and estimate its effect on growth, food efficiency, organ development and hematological indices in growing and adult Sprague-Dawley rats. The rats were divided into three groups as follows; control: non-supplementation, Notiungtang I: recommended dose, and Nogjungtang II: thrice recommended dose. Nogjungtang was composed of various general nutrients with up 93$\%$ moisture.Crude protein is the highest value as 22.78$ \%$, Mg is a major mineral as 0.48$\%$ compared to other minerals, and methionine and proline are higher by 1.31 and 1.67$\%$ than other amino acids based on dry matter, re-spectively. In both growing and adult rats, there were no significant difference in body weight gain and feed intake between the control and Nogjungtang groups. Also, organs weights (liver, heart, kidney and stomach) and hematological indices (WBC, RBC, Hb, Hct and Platelet) did not show statistically significant differences among the experimental groups. However, all of experimental rats were normal growth without hypertrophy or negative development of organs by Nogjungtang. Hematological indices maintained in normal value by thrice recommended dose of Nogjungtang. The average body weight of each treatment groups showed similar levels at end of experiment. In case of the feed efficiency ratio (feed intake/body gain), the growing rats showed 6.00, 5.81 and 5.99 and adult rats showed 9.03, 8.98 and 9.10 in control, Nogjungtang I and Nogjungtang II, respectively. In conclusion, although further investigation of Nogjungtang should be performed in the functions registered in many ancient literatures, Nogjungtang is physiologically safe and may have potential as candidate food for human health.

Effect of Carthami Tinctorii Fructus Herbal-acupuncture Solution(CTF-HAS) on Gene Expression in HepG2 carcinomar cells (Oligonucleotide chip를 이용한 홍화자약침액(紅花子藥鍼液)이 간암세포주(肝癌細胞柱)의 유전자(遺傳子) 발현(發顯)에 미치는 영향(影響))

  • Lee, Kyung-min;Lim, Seong-chul;Jung, Tae-young;Seo, Jung-chul;Han, Sang-won
    • Journal of Acupuncture Research
    • /
    • v.22 no.3
    • /
    • pp.215-225
    • /
    • 2005
  • Objective : It has long been known about the osteogenic effect of CTF-HAS on bone tissues. However, it has not been determined the effect of CTF-HAS on cancer cells. The purpose of this study is to screen the CTF-HAS mediated differentially expressed genes in cancer cells such as HepG2 hepatoma cells lines. Oligonucleotide microarray approach were employed to screen the differential expression genes. Methods : CTF-HAS was prepared by boiling and stored at $-70^{\circ}C$ until use. Cells were treated with various concentrations of CTF-HAS(0.1, 0.5, 1.5, 10, $20mg/m{\ell}$) for 24 h. Cytotoxicity was tested by MTT assay. To screen the differentially expressed genes in cancer cells, cells were treated with $1.5mg/m{\ell}$ of CTF-HAS. For oligonucleotide microarray assay, total RNA was used for gene expression analysis using oligonucleotide genechip (Human genome U133 Plus 2.0., Affimatrix Co.). ResuIts : It has no cytotoxic effects on HepG2 cells in all concentrations (0.1, 0.5, 1.5, 10, $20mg/m{\ell}$). More than twofold up-regulated genes were 19 genes. The number of more than twofold down-regulated genes was 13. Discussion : This study showed the screening of CTF-HAS mediated differentially regulated genes using combined approaches of oligonucleotide microarray. The screened genes will be used for the better understanding in therapeutic effect of CTF-HAS on cancer field.

  • PDF

The Role of MnSOD in the Mechanisms of Acquired Resistance to TNF (TNF에 대한 내성획득에서 MnSOD의 역할에 관한 연구)

  • Lee, Hyuk-Pyo;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.6
    • /
    • pp.1353-1365
    • /
    • 1997
  • Background : Tumor necrosis factor(TNF) has been considered as an important candidate for cancer gene therapy based on its potent anti-tumor activity. However, since the efficiency of current techniques of gene transfer is not satisfactory, the majority of current protocols is aiming the in vitro gene transfer to cancer cells and re-introducing genetically modified cancer cells to host. In the previous study, it was shown that TNF-sensitive cancer cells transfected with TNF-$\alpha$ cDNA would become highly resistant to TNF, and the probability was shown that the acquired resistance to TNF might be associated with synthesis of some protective protein. Understanding the mechanisms of TNF -resistance in TNF-$\alpha$ cDNA transfected cancer cells would be. an important step for improving the efficacy of cancer gene therapy as well as for better understandings of tumor biology. This study was designed to evaluate the role of MnSOD, an antioxidant enzyme, in the acquired resistance to TNF of TNF-$\alpha$ cDN A transfected cancer cells. Method : We transfected TNF-$\alpha$ c-DNA to WEHI164(murine fibrosarcoma cell line), NCI-H2058(human mesothelioma cell line), A549(human non-small cell lung cancer cell line), ME180(human cervix cancer cell line) cells using retroviral vector(pLT12SN(TNF)) and confirm the expression of TNF with PCR, ELISA, MIT assay. Then we determined the TNF resistance of TNF-$\alpha$ cDNA transfected cells(WEHI164-TNF, NCIH2058-TNF, A549-TNF, ME180-TNF) and the changes of MnSOD mRNA expressions with Northern blot analysis. Results : The MnSOD mRNA expressions of parental cells and genetically modified cells of WEHI164 and ME180 cells(both are naturally TNF sensitive) were not significantly different The MnSOD mRNA expressions of genetically modified cells of NCI-H2058 and A549(both are naturally TNF resistant) were higher than those of the parental cells, while those of parental cells with exogenous TNF were also elevated. Conclusion : The acquired resistance to TNF after TNF-$\alpha$ cDNA transfection may not be associated with the change in the MnSOD expression, but the difference in natural TNF sensitivity of each cell may be associated with the level of the MnSOD expression.

  • PDF

Attenuation of Lipopolysaccharide-induced Inflammatory and Oxidative Response by 5-Aminolevulinic Acid Phosphate in RAW 264.7 Macrophages (RAW 264.7 대식세포에서 lipopolysaccharide 자극에 의한 염증성 및 산화적 스트레스에 미치는 5-aminolevulinic acid phosphate의 영향)

  • Ji, Seon Yeong;Kim, Min Yeong;Hwangbo, Hyun;Lee, Hyesook;Hong, Su Hyun;Cha, Hee-Jae;Kim, Heui-Soo;Kim, Suhkmann;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.818-826
    • /
    • 2021
  • 5-Aminolevulinic acid phosphate (5-ALA-p) is a substance obtained by eluting 5-ALA (a natural delta amino acid) with aqueous ammonia, adding phosphoric acid to the eluate, and then adding acetone to confer properties suitable for use in photodynamic therapy applications. However, its pharmacological efficacy, including potential mechanisms of antioxidant and anti-inflammatory reactions, remains unclear. This study aimed to investigate the effects of 5-ALA-p on oxidative and inflammatory stresses in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Our data showed that 5-ALA-p significantly inhibited excessive phagocytic activity via LPS and attenuated oxidative stress in LPS-treated RAW 264.7 cells. Furthermore, 5-ALA-p improved mitochondrial biogenesis reduced by LPS, suggesting that 5-ALA-p restores mitochondrial damage caused by LPS. Additionally, 5-ALA-p significantly suppressed the release of nitric oxide (NO) and pro-inflammatory cytokines, such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β, and IL-6, which are associated with the inhibition of inducible NO synthase and respective cytokine expression. Furthermore, 5-ALA-p reduced the nuclear translocation of nuclear factor-kappa B (NF-κB) and inhibited phosphorylation of mitogen-activated protein kinases (MAPKs), indicating that the anti-inflammatory effect of 5-ALA-p is mediated through the suppression of NF-κB and MAPK signaling pathways. Based on these results, 5-ALA-p may serve as a potential candidate to reduce inflammation and oxidative stress.

Two new triterpenoid saponins derived from the leaves of Panax ginseng and their antiinflammatory activity

  • Li, Fu;Cao, Yufeng;Luo, Yanyan;Liu, Tingwu;Yan, Guilong;Chen, Liang;Ji, Lilian;Wang, Lun;Chen, Bin;Yaseen, Aftab;Khan, Ashfaq A.;Zhang, Guolin;Jiang, Yunyao;Liu, Jianxun;Wang, Gongcheng;Wang, Ming-Kui;Hu, Weicheng
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.600-605
    • /
    • 2019
  • Background: The leaves and roots of Panax ginseng are rich in ginsenosides. However, the chemical compositions of the leaves and roots of P. ginseng differ, resulting in different medicinal functions. In recent years, the aerial parts of members of the Panax genus have received great attention from natural product chemists as producers of bioactive ginsenosides. The aim of this study was the isolation and structural elucidation of novel, minor ginsenosides in the leaves of P. ginseng and evaluation of their antiinflammatory activity in vitro. Methods: Various chromatographic techniques were applied to obtain pure individual compounds, and their structures were determined by nuclear magnetic resonance and high-resolution mass spectrometry, as well as chemical methods. The antiinflammatory effect of the new compounds was evaluated on lipopolysaccharide-stimulated RAW 264.7 cells. Results and conclusions: Two novel, minor triterpenoid saponins, ginsenoside $LS_1$ (1) and 5,6-didehydroginsenoside $Rg_3$ (2), were isolated from the leaves of P. ginseng. The isolated compounds 1 and 2 were assayed for their inhibitory effect on nitric oxide production in LPS-stimulated RAW 264.7 cells, and Compound 2 showed a significant inhibitory effect with $IC_{50}$ of $37.38{\mu}M$ compared with that of NG-monomethyl-L-arginine ($IC_{50}=90.76{\mu}M$). Moreover, Compound 2 significantly decreased secretion of cytokines such as prostaglandin $E_2$ and tumor necrosis factor-${\alpha}$. In addition, Compound 2 significantly suppressed protein expression of inducible nitric oxide synthase and cyclooxygenase-2. These results suggested that Compound 2 could be used as a valuable candidate for medicinal use or functional food, and the mechanism is warranted for further exploration.

Attenuation of Oxidative Stress-Induced HepG2 Cellular Damage by Cirsiumjaponicum Root Extract (HepG2 세포에서 대계 추출물에 의한 산화적 스트레스 유발 세포 손상의 억제)

  • Da Jung Ha;Seohwi Kim;Byunwoo Son;Myungho Jin;Sungwoo Cho;Sang Hoon Hong;Yung Hyun Choi;Sang Eun Park
    • Journal of Life Science
    • /
    • v.33 no.12
    • /
    • pp.1002-1014
    • /
    • 2023
  • The root of Cirsium japonicum var. maackii (Maxim.) has long been used in traditional medicine to prevent the onset and progression of various diseases and has been reported to exert a wide range of physiological effects, including antioxidant activity. However, research on its effects on hepatocytes remains scarce. This study used the human hepatocellular carcinoma HepG2 cell line to investigate the antioxidant activity of ethanol extract of C. japonicum root (EECJ) on hepatocytes. Hydrogen peroxide (H2O2) was used to mimic oxidative stress. The results showed that EECJ significantly reverted the decrease in cell viability and suppressed the release of lactate dehydrogenase in HepG2 cells treated with H2O2. Moreover, an analysis of changes in cell morphology, flow cytometry, and microtubule-associated protein light chain 3 (LC3) expression showed that EECJ significantly inhibited HepG2 cell autophagy induced by H2O2. Furthermore, it attenuated H2O2-induced apoptosis and cell cycle disruption by blocking intracellular reactive oxygen species and mitochondrial superoxide production, indicating strong antioxidant activity. EECJ also restored the decreased levels of intracellular glutathione (GSH) and enhanced the expression and activity of superoxide dismutase and GSH peroxidase in H2O2-treated HepG2 cells. Although an analysis of the components contained in EECJ and in vivo validation using animal models are needed, these findings indicate that EECJ is a promising candidate for the prevention and treatment of oxidative stress-induced liver cell damage.