• Title/Summary/Keyword: Protein and Energy Utilization

Search Result 211, Processing Time 0.033 seconds

Effects of Protein and Lipid Levels in Extruded Pellets on the Growth and Body Composition of the Olive Flounder Paralichthys olivaceus during the Summer and Whiter Seasons

  • Kim, Kyoung-Duck;Kang, Yong-Jin;MoonLee, Hae-Young;Kim, Kang-Woong;Son, Maeng-Hyun
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.2
    • /
    • pp.104-110
    • /
    • 2009
  • Feeding trials were performed at two different water temperatures (summer and winter seasons) to identify suitable protein and lipid (energy) levels to be used in formulating extruded pellets for olive flounder. Experiments were conducted to determine the effects of protein and lipid levels in extruded pellets on the growth and body composition of the flounder in both feeding trials. Six experimental diets were prepared containing three protein levels (46%, 51%, and 56%) and two lipid levels (10% and 17%). In the first experiment, during the summer season ($22{\pm}2.2^{\circ}C$), a triplicate group of fish (initial weight, 114 g) were fed to satiation one of the six diets for 11 weeks. The highest weight gain was observed in fish fed the 56/17 (% protein/% lipid) diet, but this weight gain was not significantly different from that of fish fed the other diets, except for those fed the 46/10 diet. The feed efficiency and protein efficiency ratio of fish fed the 17% lipid diets were higher than those of fish fed the 10% lipid diets at each protein level. In the second experiment, during the winter season ($13{\pm}1.5^{\circ}C$), a triplicate group of fish (initial weight, 107 g) were fed to satiation one of the six diets for 9 weeks. Weight gain was not significantly different among all groups. The feed efficiency and protein efficiency ratio tended to increase with increasing dietary lipid level at each protein level. The whole-body crude lipid content of the of fish fed the 17% lipid diets was significantly higher than that of fish fed the 10% lipid diets at each protein level in both feeding trials. Based on the data obtained in this study, the inclusion of dietary protein at a level of 46% appears to be sufficient to support optimal growth, and increasing the dietary lipid level from 10% to 17% had no beneficial effects on the growth and feed utilization of olive flounder (110-300 g), except for fish fed a 56% protein diet in the summer season.

Effect of Exogenous Xylanase Supplementation on the Performance, Net Energy and Gut Microflora of Broiler Chickens Fed Wheat-based Diets

  • Nian, F.;Guo, Y.M.;Ru, Y.J.;Li, F.D.;Peron, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.3
    • /
    • pp.400-406
    • /
    • 2011
  • An experiment was carried out to assess the effects of xylanase supplementation on the performance, net energy and gut microflora of broilers fed a wheat-based diet. Day-old male broiler chicks were allocated to two dietary treatments. Each treatment was composed of six replicate cages of seven broilers per cage. The diets were wheat-based and offered as mash. The treatments included i) basal diet deficient in metabolizable energy; and ii) basal diet supplemented with a commercial xylanase added at 4,000 U/kg feed. Bird performance, nutrient utilization and gut microbial populations were measured. Heat production and net energy were determined using an auto-control, open circuit respiration calorimetry apparatus. Results showed that exogenous xylanase supplementation improved feed conversion efficiency (p<0.05) and increased diet AME (+4.2%; p<0.05), as well as heat production (HP), net energy for production (NEp), production of $CO_2$, and consumption of $O_2$. The respiratory quotient (RQ) was also increased (p<0.01) by the addition of xylanase. NEp value was increased by 26.1% while daily heat production per kg metabolizable body weight was decreased by 26.2% when the xylanase was added. Xylanase supplementation numerically increased the ileal digestibility of protein and energy by 3 and 6 percentage units respectively (p>0.05). The ileal digestibility of hemicellulose was significantly improved by xylanase addition (p<0.05).

Effects of Allium Vegetables on Energy Stores and Utilization in Exercising Rats

  • Kong, Eun-Young;Cho, Youn-Ok
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.1
    • /
    • pp.39-44
    • /
    • 2004
  • This study investigated the effect of allium vegetable intake on the storage and utilization of energy substrates before, during, and after exercise in tissues of rats. Ninety rats were fed either a control diet or a diet with added Allium sativum (AS, garlic), Allium cepa (AC, onion), Allium fistulosum (AF, spring onion), or Allium tuberosum (AT, Chinese chives) for 4 weeks and were then subdivided into 3 groups: before-exercise (BE); during-exercise (DE); after-exercise (AE). The DE group was exercised on treadmill for 1 hour just before being sacrificed at the end of 4th week of the dietary treatment rats in the AE group were allowed to recuperate for 2 hours after being exercised like the DE group. The levels of glycogen (GLY), triglyceride (TG) and protein (PRO) were compared in liver and skeletal muscle. In the AS diet animals, the level of liver GLY was significantly higher than those of control animals in the BE, DE and AE groups. The level of muscle TG also tended to be higher in BE, but lower in AE than in control animals. In AC animals, the level of muscle GLY was significantly lower than those of control animals in BE, DE and AE. The level of muscle TG also tended to be higher than those of control animals in BE and DE but tended to be lower in AE. In AF animals, the level of muscle GLY was significantly lower than those of control animals in BE, DE and AE. The level of muscle TG was also significantly lower than those of control animals in BE, DE and AE groups. In AT animals, the level of muscle GLY was significantly lower than those of control animals in BE, DE and AE. These results suggest that Allium sativum diets enhance the capacity to store fuel before as well as during exercise and increases the potential to utilize the stored fuel during exercise.

Effects of different dietary ratio of metabolizable glucose and metabolizable protein on growth performance, rumen fermentation, blood biochemical indices and ruminal microbiota of 8 to 10-month-old dairy heifers

  • Sun, Jie;Xu, Jinhao;Ge, Rufang;Wang, Mengzhi;Yu, Lihuai;Wang, Hongrong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1205-1212
    • /
    • 2018
  • Objective: The aim of this experiment was to evaluate the effects of different dietary ratio of metabolizable glucose (MG) to metabolizable protein (MP) on growth performance, blood metabolites, rumen fermentation parameters and the ruminal microbial community of 8 to 10-month-old heifers. Methods: A total of 24 Holstein heifers weighing an average of 282.90 kg (8 month of age) were randomly assigned to four groups of six. The heifers were fed one of four diets of different dietary MG/MP (0.97, 1.07, 1.13, and 1.26). Results: The results showed that the ratio of MG/MP affected the growth performance, blood metabolites, rumen fermentation parameters and the ruminal microbial community of heifers. The average daily gain of heifers was enhanced by increasing the ratio of MG/MP (p<0.05). The concentration of blood urea nitrogen, cholesterol, and low density lipoprotein cholesterol as well as the concentration of total volatile fatty acid in the rumen fluid of heifers decreased with the improvement in the ratio of dietary MG/MP (p<0.05). However, the relative amount of Ruminococcus albus and Butyrivibrio fibrisolvens in the rumen of heifers was increased significantly (p<0.05) when the dietary MG/MP increased. At the same time, with the improvement in dietary MG/MP, the amount of Fibrobacter succinogenes increased (p = 0.08). Conclusion: A diet with an optimal ratio (1.13) of MG/MP was beneficial for the improvement of growth, rumen fermentation, dietary protein and energy utilization of 8 to 10-month-old dairy heifers in this experiment.

Effect of Dietary Brown Seaweed Levels on the Protein and Energy Metabolism in Broiler Chicks Activated Acute Phase Response (급성기 반응을 활성화한 육계 병아리에서 사료중 미역 제품 수준이 단백질과 에너지 대사에 미치는 영향)

  • Koh, T.S.;Im, J.T.;Park, I.K.;Lee, H.J.;Choi, D.Y.;Choi, C.J.;Lee, H.G.;Choi, Y.J.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.379-390
    • /
    • 2005
  • Effects of dietary brown seaweed product levels on performance and metabolism of protein and energy were investigated in broiler chicks that were activated the acute phase response. One day old chicks were fed diets containing either 0.0(basal), 1.0, 2.0 or 4.0 % brown seaweed products for 3 weeks. The acute phase response was activated by injecting i.p. the Salmonella typhimurium lipopolysacharide(LPS) at $2^{nd}$ week of age. The acute phase response lowered nitrogen balance(NB)/ $kg^{0.75}$ (metabolic body size) and highered dietary ME values in birds fed diets containing brown seaweed product. Increase in dietary brown seaweed products levels lowered daily gain, and NB, uric acid nitrogen(UAN) excretion and ME utilization per $kg^{0.75}$ in chicks with the acute phase response. But the dietary brown seaweed product level did not affect the performance of 3 Week old broiler chicks that experienced the acute phase response. And the brown seaweed products 1.0 and 2.0 % diets lessened the feed intake reduction caused by the acute phase response in broiler chicks. The brown seaweed 2.0% diet increased NB / g diet or $kg^{0.75}$ and decreased the excretion of UAN/g diet or $kg^{0.75}$. This result indicated that the brown seaweed was able to interact with the acute phase response and increased protein retention via decreased breakdown of protein in birds fed brown seaweed 2.0% diet.

Nutritional Value of Rice Bran Fermented by Bacillus amyloliquefaciens and Humic Substances and Its Utilization as a Feed Ingredient for Broiler Chickens

  • Supriyati, Supriyati;Haryati, T.;Susanti, T.;Susana, I.W.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.2
    • /
    • pp.231-238
    • /
    • 2015
  • An experiment was conducted to increase the quality of rice bran by fermentation using Bacillus amyloliquefaciens and humic substances and its utilization as a feed ingredient for broiler chickens. The experiment was carried out in two steps. First, the fermentation process was done using a completely randomized design in factorial with 16 treatments: i) Dosage of B.amyloliquefaciens ($2.10^8cfu/g$), 10 and 20 g/kg; ii) Graded levels of humic substances, 0, 100, 200, and 400 ppm; iii) Length of fermentation, three and five days. The results showed that the fermentation significantly (p<0.05) reduced crude fiber content. The recommended conditions for fermentation of rice bran: 20 g/kg dosage of inoculums B. amyloliquefaciens, 100 ppm level of humic substances and three days fermentation period. The second step was a feeding trial to evaluate the fermented rice bran (FRB) as a feed ingredient for broiler chickens. Three hundred and seventy-five one-day-old broiler chicks were randomly assigned into five treatment diets. Arrangement of the diets as follows: 0%, 5%, 10%, 15%, and 20% level of FRB and the diets formulation based on equal amounts of energy and protein. The results showed that 15% inclusion of FRB in the diet provided the best bodyweight gain and feed conversion ratio (FCR) values. In conclusion, the nutrient content of rice bran improved after fermentation and the utilization of FRB as a feed ingredient for broiler chickens could be included up to 15% of the broiler diet.

Influence of β 1-4 Galacto-oligosaccharides Supplementation on Nitrogen Utilization, Rumen Fermentation, and Microbial Nitrogen Supply in Dairy Cows Fed Silage

  • Santoso, B.;Kume, S.;Nonaka, K.;Gamo, Y.;Kimura, K.;Takahashi, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.8
    • /
    • pp.1137-1142
    • /
    • 2003
  • In a balanced incomplete block design, two dry Holstein cows were used to investigate the effect of $\beta$ 1-4 galactooligosaccharides (GOS) supplementation on nitrogen (N) utilization, rumen fermentation and microbial N supply in the rumen. During the experiment, cows were fed four diets: orchardgrass (Dactylis glomerata L.) silage (OS), OS with GOS supplementation (OSG), OS mixed with alfalfa (Medicago sativa L.) silage (MS) and MS with GOS supplementation (MSG). GOS was supplemented at 2% of dry matter intake. Diets were fed at maintenance level of protein and energy. Results showed that N digestion was affected by silage and interaction of silage and GOS supplementation. Cows fed OSG had the highest N digested (p<0.05) followed by MS, OS and MSG. Supplementation of GOS to OS or MS diets tended to improve N utilization through reducing the N losses on dairy cows. There was no effect of GOS supplementation on rumen fermentation parameters (i.e. pH, $NH_3$-N and total VFA) at 1 h and 6 h after feeding. Compared to cows fed MS, cows fed OS silage had higher (p<0.05) allantoin excretion (80.8 vs. 67.1 mmol/d) and higher (p<0.05) total purine derivatives excretion (92.9 vs. 78.5 mmol/d). The microbial N supply in cows fed OSG was higher (p<0.05) than those fed OS, MS and MSG.

Forage Quality Evaluation of Mutant Lines derived from Gamma-ray Treatments in Rubus fructicosus L. (감마선 조사 유래 블랙베리(Rubus fructicosus L.) 돌연변이 계통의 농업부산물 사료가치 분석)

  • Ryu, Jaihyunk;Kim, Dong sub;Ha, Bo-Keun;Kim, Jin-Baek;Kim, Sang Hoon;Ahn, Joon-Woo;Jeong, Il Yun;Jo, Han-Jik;Kim, Ee-Yup;Kang, Si-Yong
    • Journal of Radiation Industry
    • /
    • v.7 no.1
    • /
    • pp.37-43
    • /
    • 2013
  • We examined the forage quality to provide the basic information for the utilization of blackberry by-products (leaf and stem) among thirty-five mutant lines derived from gamma-ray. The leaves had higher crude protein (CP) contents than stems. In addition, the leaves showed broad ranges of variation in crude fat, crude fiber and crude ash. The overall forage quality of the stems were similar to those of the original variety. The mean of neutral detergent fiber (NDF) content of leaves and stems in mutant lines were 25.88% and 58.98%, respectively. Also, the mean of acid detergent fiber (ADF) content of leaves and stems in mutant lines were 15.43% and 49.27%, respectively. Forage quality grades of all blackberry leaf were special quality class. However, the blackberry stem ranked $1^{st}$ to $5^{th}$ in quality class. The stem diameter was negatively ($P{\leq}0.05$) correlated with the moisture and crude protein. Also, the fruit length was highly negatively ($P{\leq}0.01$) correlated with the RFV (relative feed value) in blackberry leaf. The one hundred fruit weight was highly negatively ($P{\leq}0.01$) correlated with the crude ash. Based on these results, the by-products of blackberry could provide high quality forage for feeding of live stock.

Effects of Alpha-galactosidase Supplementation to Corn-soybean Meal Diets on Nutrient Utilization, Performance, Serum Indices and Organ Weight in Broilers

  • Wang, C.L.;Lu, W.Q.;Li, Defa;Xing, J.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1761-1768
    • /
    • 2005
  • Effects of alpha-galactosidase (GAL) on broiler corn-soybean meal diet was investigated. In experiment 1, sixty cockerels were allocated to five groups, including three enzyme treatments (GAL added at 0, 500, and 1,000 mg/kg diet), a nitrogen-free diet group and a fast group. The true nitrogen-corrected ME (TME$_n$) and true amino acid availability were determined. In experiment 2, 324 day-old chicks were used in a 2${\times}$3 factorial design consisting of two energy contents (high and low) and three GAL levels (0, 250, and 500 mg/kg). Three feeding phases, comprising 0-21 d, 22-35 d and 36-48 d, were involved. GAL addition improved TME$_n$ and the availability of methionine and cystine (p<0.05). The apparent ME (AME) or nitrogen-corrected AME (AME$_n$) and digestibility of dry matter, organic matter, calcium, and phosphorus were improved significantly on d 21, so was crude protein and an interaction of energy and GAL on AME$_n$ (p<0.05) was found on d 35. However, daily intake and daily gain were significantly improved with GAL addition (p<0.05) during 21 d. The small intestine relative weight decreased at 250 mg/kg GAL (p<0.05) on d 35, whereas presented an interaction between GAL and energy on d 21 (p<0.05). Likewise, this treatment increased breast muscle ratio (p<0.05). On d 21, triglycerides level of broilers showed interaction between energy and enzyme levels (p<0.05). Uric acid level in 500 mg/kg GAL declined linearly (p<0.05). On d 35, quadratic effects (p<0.05) were observed in total protein, albumin, globulin and cholesterol content for enzyme supplementation. And the interactive effects of energy and GAL on serum values showed more obviously. The study implies that GAL improved energy and nutrient availability of corn-soybean meal diet in broiler. The GAL supplementation to corn-soybean meal based diet can improve performance of broilers in early stages of growth.

Intestinal Structure and Function of Broiler Chickens on Wheat-Based Diets Supplemented With a Microbial Enzyme

  • Iji, P.A.;Hughes, R.J.;Choct, M.;Tivey, D.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.1
    • /
    • pp.54-60
    • /
    • 2001
  • A study was conducted to assess the nutritive value of two diets based on a low-energy variety of wheat, RAC C1 and their effects on intestinal mucosal structure and function in broiler chickens. The diets were fed with or without microbial enzyme supplement to male and female broiler chickens. The digesta viscosity was reduced (p<0.001) through supplementation with a microbial enzyme in male and female chicks. Enzyme supplementation also improved the dietary apparent metabolizable energy content (p<0.001) and had slight but non-significant positive effects on chick growth and feed conversion ratio. Intestinal mucosal structure and enzyme function were not affected by microbial enzyme supplement. Male chicks consumed more feeds (p<0.001), attained higher final body weight (p<0.001) and were more efficient at feed utilization (p<0.01) than the female chicks. Except for duodenal villus surface area and ileal protein content, intestinal mucosal structure and enzyme activities were similar between the two sexes and dietary treatment groups. The study showed an improvement in the nutritive value of the diets in the presence of the microbial enzyme supplement.