DOI QR코드

DOI QR Code

Influence of β 1-4 Galacto-oligosaccharides Supplementation on Nitrogen Utilization, Rumen Fermentation, and Microbial Nitrogen Supply in Dairy Cows Fed Silage

  • Santoso, B. (Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine) ;
  • Kume, S. (Department of Animal Production, Hokkaido National Agricultural Experiment Station) ;
  • Nonaka, K. (Department of Animal Production, Hokkaido National Agricultural Experiment Station) ;
  • Gamo, Y. (Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine) ;
  • Kimura, K. (Yakult Central Institute for Microbiological Research) ;
  • Takahashi, J. (Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine)
  • Received : 2002.07.02
  • Accepted : 2003.02.27
  • Published : 2003.08.01

Abstract

In a balanced incomplete block design, two dry Holstein cows were used to investigate the effect of $\beta$ 1-4 galactooligosaccharides (GOS) supplementation on nitrogen (N) utilization, rumen fermentation and microbial N supply in the rumen. During the experiment, cows were fed four diets: orchardgrass (Dactylis glomerata L.) silage (OS), OS with GOS supplementation (OSG), OS mixed with alfalfa (Medicago sativa L.) silage (MS) and MS with GOS supplementation (MSG). GOS was supplemented at 2% of dry matter intake. Diets were fed at maintenance level of protein and energy. Results showed that N digestion was affected by silage and interaction of silage and GOS supplementation. Cows fed OSG had the highest N digested (p<0.05) followed by MS, OS and MSG. Supplementation of GOS to OS or MS diets tended to improve N utilization through reducing the N losses on dairy cows. There was no effect of GOS supplementation on rumen fermentation parameters (i.e. pH, $NH_3$-N and total VFA) at 1 h and 6 h after feeding. Compared to cows fed MS, cows fed OS silage had higher (p<0.05) allantoin excretion (80.8 vs. 67.1 mmol/d) and higher (p<0.05) total purine derivatives excretion (92.9 vs. 78.5 mmol/d). The microbial N supply in cows fed OSG was higher (p<0.05) than those fed OS, MS and MSG.

Keywords

References

  1. Agriculture and Food Research Council. 1992. Nutritive Requirements of Ruminant Animals: Protein. Nutr. Abstr. Rev., (Series B). 62:787-835.
  2. Agriculture, Forestry and Fisheries Research Council Secretariat. 1994. Japanese Feeding Standard for Dairy Cattle, Chuouchikusankai, Tokyo. pp. 19-24.
  3. Bouhnik, Y., B. Flourie, L. D'Agay-Abensour, P. Pochart, G. Gramet, M. Durand and J. Rambaud. 1997. Administration of transgalacto-oligosaccharides increases fecal bifidobacteria and modifies colonic fermentation metabolism in healthy humans. J. Nutr. 127:444-448.
  4. Broudiscou, L. and J. P. Jouany. 1995. Reassessing the manipulation of protein synthesis by rumen microbes. Reprod. Nutr. Dev. 35:517-535. https://doi.org/10.1051/rnd:19950505
  5. Cassida, K. A. and M. R. Stokes. 1986. Eating and resting salivation in early lactation dairy cows. J. Dairy Sci. 69:1282-1292. https://doi.org/10.3168/jds.S0022-0302(86)80534-3
  6. Chakravarti, I. M., R. G. Laha and J. Roy. 1967. Handbook of Methods of Applied Statistics, Vol. II: Planning of Surveys and Experiments. John Wiley & Sons, Inc., New York. pp. 70-88.
  7. Chamberlain, D. G. 1987. The silage fermentation in relation to the utilization of the nutrients in the rumen. Process Biochem. 22:60-63.
  8. Chen, X. B. and M. J. Gomes. 1995. Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivatives-An overview of Technical Details. Occasional Publication 1992. International Feed Resources Unit, Rowett Research Institute, Aberdeen, UK.
  9. Conway, E. J. and E. O'Malley. 1942. Microdiffussion methods: ammonia and urea using buffered absorbents (revised methods or ranges greater than 10 ${\mu}g$. N). Biochem. J. 36:655-661. https://doi.org/10.1042/bj0360655
  10. France, J. and R. C. Siddons. 1993. Volatile fatty acid production. In: Quantitative Aspects of Ruminant Digestion and Metabolism. (Ed. J. M. Forbes and J. France). C.A.B. International, Willingford, UK. pp. 107-122.
  11. Gamo, Y., M. Mii, X. G. Zhou, S. Chetra, B. Santoso, I. Arai, K. Kimura and J. Takahashi. 2001. Effects of lactic acid bacteria, yeasts and galacto-oligosaccharides supplementation on in vitro rumen methane production. In: Proceedings of the 1st International Conference on Greenhouse Gases and Animal Agriculture, November 7-11, 2001, Obihiro, Japan. pp. 371-374.
  12. Harrison, J. H. and R. Blauwiekel. 1994. Fermentation and utilization of grass silage. J. Dairy Sci. 77:3209-3235. https://doi.org/10.3168/jds.S0022-0302(94)77264-7
  13. Hoover, W. H. and S. R. Stokes. 1991. Balancing carbohydrate and proteins for optimum rumen microbial yield. J. Dairy Sci. 74:3640-3644.
  14. Kikuchi, H., C. Andrieux, M. Riottot, M. Bensaada, F. Popot, P. Beaumatin and O. Szylit. 1996. Effect of two levels of transgalactosylated oligosaccharide intake in rats associated with human faecal microflora on bacterial glycolytic activity, end-products of fermentation and bacterial steroid transformation. J. App. Bacteriol. 80:439-446. https://doi.org/10.1111/j.1365-2672.1996.tb03240.x
  15. Kim, K. H., Y. G. Oh, J. Choung and D. G. Chamberlain. 1999. Effects of varying degrees of synchrony of energy and nitrogen release in the rumen on the synthesis of microbial protein in cattle consuming grass silage. J. Sci. Food Agric. 79:833-838. https://doi.org/10.1002/(SICI)1097-0010(19990501)79:6<833::AID-JSFA293>3.0.CO;2-C
  16. Lee, L., S. Kinoshita, H. Kumagai and T. Tochikura. 1980. Galactokinase of Bifidobacterium bifidum. Agric. Biol. Chem. 44:2961-2966. https://doi.org/10.1271/bbb1961.44.2961
  17. Martin-Orue, S. M., J. Balcells, F. Vicente and C. Castrillo. 2000. Influence of dietary rumen-degradable protein supply rumen characteristics and carbohydrate fermentation in beef cattle offered high-grain diets. Anim. Feed Sci. Technol. 88:59-77. https://doi.org/10.1016/S0377-8401(00)00191-7
  18. Murphy, M. R., L. R. Baldwin and L. J. Koong. 1982. Estimation of stoichiometric parameters for rumen fermentation of roughage and concentrate diets. J. Anim. Sci. 55:411-421. https://doi.org/10.2527/jas1982.552411x
  19. Ogimoto, K. and S. Imai. 1981. Atlas of Rumen Microbiology. Japan Scientific Societies Press. p. 231.
  20. Russell, J. B., J. D. O'Connor, D. G. Fox, P. J. Van Soest and C. J. Sniffen. 1992. A net carbohydrate and protein system for evaluating cattle diets. I. Ruminal fermentation. J. Anim. Sci. 70:3551-3561.
  21. Sako, T., K. Matsumoto and R. Tanaka. 2000. Recent progress on research and application of non-digestible galactooligosaccharides. Int. Dairy Sci. 9:69-80.
  22. Satter, L. D. and L. L. Slyter. 1974. Effect of ammonia concentration of rumen microbial protein production in vitro. Br. J. Nutr. 32:199-208. https://doi.org/10.1079/BJN19740073
  23. Statistical Analysis Systems Institute. 1990. $SAS/STAT^{\circledR}$ User's Guide Statistic, Version 6, Cary, NC, USA.
  24. Steel, R. G. D. and J. H. Torrie. 1960. Principles and Procedures of Statistics. 2nd edn. McGraw-Hill Book Company, New York. pp. 187-188.
  25. Takahashi, J., A. S. Chaudhry, R. G. Beneke, Suhubdy and B. A. Young. 1997. Modification of methane emission in sheep by cysteine and a microbial preparation. Sci. Total. Environ. 204:117-123. https://doi.org/10.1016/S0048-9697(97)00162-9
  26. Tamminga, S. 1992. Nutrition management of dairy cows as a contribution to pollution control. J. Dairy Sci. 75:345-357. https://doi.org/10.3168/jds.S0022-0302(92)77770-4
  27. Tanaka, R. and K. Matsumoto. 1998. Recent progress on probiotics in Japan, including galacto-oligosaccharides. Bull. Int. Dairy. Sci. 335:21-27.
  28. Thomas, C. and P. C. Thomas. 1985. Factors affecting the nutritive value of grass silage. In: Recent Advances in Animal Nutrition. (Ed. W. Haresign and D. J. A. Cole). Butterworths, London. pp. 223-256.
  29. Vagnoni, D. B. and G. A. Broderick. 1997. Effects of supplementation of energy or ruminally undegraded protein to lactating cows fed alfalfa hay or silage. J. Dairy Sci. 80:1703-1712. https://doi.org/10.3168/jds.S0022-0302(97)76102-2
  30. Van Nevel, C. J. and D. I. Demeyer. 1996. Control of rumen methanogenesis. Environ. Monit. Assest. 42:73-97. https://doi.org/10.1007/BF00394043
  31. Van Soest, P. J. 1994. Nutritional Ecology of The Ruminant. 2nd edn. Comstock Publishing Associates a Division of Cornell University Press, Ithaca and London. p. 476.

Cited by

  1. Effect of Yucca schidigera with or without nisin on ruminal fermentation and microbial protein synthesis in sheep fed silage- and hay-based diets vol.75, pp.6, 2004, https://doi.org/10.1111/j.1740-0929.2004.00223.x
  2. Effects of galacto-oligosaccharides on IgA induction in mammary glands of lactating mice vol.86, pp.3, 2015, https://doi.org/10.2508/chikusan.86.319
  3. Manipulation of rumen methanogenesis by the combination of nitrate with β1-4 galacto-oligosaccharides or nisin in sheep vol.115, pp.1, 2003, https://doi.org/10.1016/j.anifeedsci.2004.01.006
  4. Effects of supplementing galacto-oligosaccharides, Yucca schidigera or nisin on rumen methanogenesis, nitrogen and energy metabolism in sheep vol.91, pp.3, 2004, https://doi.org/10.1016/j.livprodsci.2004.08.004
  5. Influence of Level of Feed Intake on Concentration of Purine Derivatives in Urinary Spot Samples and Microbial Nitrogen Supply in Crossbred Bulls vol.19, pp.9, 2003, https://doi.org/10.5713/ajas.2006.1291
  6. Ruminal fermentation and nitrogen metabolism in sheep fed a silage-based diet supplemented with Yucca schidigera or Y. schidigera and nisin vol.129, pp.3, 2003, https://doi.org/10.1016/j.anifeedsci.2006.01.001