• Title/Summary/Keyword: Protein Transduction

Search Result 600, Processing Time 0.034 seconds

Nitrogen Control in Corynebacterium glutamicum: Proteins, Mechanisms, Signals

  • Burkovski, Burkovski;Andreas, Andreas
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.187-194
    • /
    • 2007
  • In order to utilize different nitrogen sources and to survive in a situation of nitrogen limitation, microorganisms have developed sophisticated mechanisms to adapt their metabolism to a changing nitrogen supply. In this communication, the recent knowledge of nitrogen regulation in the amino acid producer Corynebacterium glutamicum is summarized. The core adaptations of C. glutamicum to nitrogen limitation on the level of transcription are controlled by the global regulator AmtR. Further components of the signal pathway are GlnK, a $P_{II}-type$ signal transduction protein, and GlnD. Mechanisms involved in nitrogen control in C. glutamicum regulating gene expression and protein activity are repression of transcription, protein-complex formation, protein modification by adenylylation, change of intracellular localization, and proteolysis.

Antiapoptotic Fusion Protein Delivery Systems

  • Tan, Cheau Yih;Kim, Yong-Hee
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.481-488
    • /
    • 2008
  • Apoptosis is a natural cell suicide mechanism to maintain homeostasis. However, many of the diseases encountered today are caused by aberrant apoptosis where excessive apoptosis leads to neurodegenerative disorders, ischemic heart disease, autoimmune disorders, infectious diseases, etc. A variety of antiapoptotic agents have been reported to interfere with the apoptosis pathway. These agents can be potential drug candidates for the treatment or prevention of diseases caused by dysregulated apoptosis. Obviously, world-wide pharmaceutical and biotechnology companies are gearing up to develop antiapoptotic drugs with some products being commercially available. Polymeric drug delivery systems are essential to their success. Recent R&D efforts have focused on the chemical or bioconjugation of antiapoptotic proteins with the protein transduction domain (PTD) for higher cellular uptake with antibodies for specific targeting as well as with polymers to enhance the protein stability and prolonged effect with success observed both in vivo and in vitro. All these different fusion antiapoptotic proteins provide promising results for the treatment of dysregulated apoptosis diseases.

Mating-type-specific inhibition of phosphorylation by sexual pheromone (Rh. A) on heterobasidiomycetous yeast Rhodosporidium toruloides. (이담자효모 Rhodosporidium toruloides의 성pheromone(Rh.A)에 의한 성접합형 특이적 인산화 저해 반응)

  • 정영기
    • Journal of Life Science
    • /
    • v.7 no.4
    • /
    • pp.322-328
    • /
    • 1997
  • Two phosphorylated proteins having molecular weights of 57kD and 72kD were detected from the slubilized membrane protein fraction of mating type a cells of Rhodosporidium toruloides which belongs to heterobasidiomycetous yeast. The phosphorylation of the protein was inhibited by a sexual pheromone, Rhodotorucine A (Rh. A), which is secreted from mating type a cells. On the other hand, counterpart mating type A cells and M-39 strain which is a styerile mutant derived from a cells, had also the same two phosphorylated proteins, However, the phosphorylation of the protein from A cells, and M-39 strain were not inhibited by the Rh. A. It suggests that inhibition of the phosphorylation reaction by the Rh. A in mating type a cells is a mating-type-specific reaction that relate to transduction mechanism of sexual pheromone signaling.

  • PDF

The optimal conditions to improve retrovirus-mediated transduction efficiency to NIH 3T3 cells (레트로바이러스(retrovirus)의 NIH 3T3 세포로의 유전자 전달효율을 증가시키기 위한 적절한 조건들)

  • Lee, Jun Ah;Lee, Kang-Min;Lee, Hyun Jae;Lee, Yun Jeong;Kim, Dong Ho;Lim, Jung Sub;Park, Kyung-Duk
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.10
    • /
    • pp.1011-1017
    • /
    • 2007
  • Purpose : We tried to assess the optimal conditions to improve low transduction efficiency and their effect on target cells. Methods : Cultured NIH 3T3 cells were incubated with retroviral vectors bearing an enhanced green fluorescent protein (eGFP) gene. We varied the ratio of viral vectors to target cells (1:1-1:8) and the number of transfections (${\times}1$, ${\times}2$), and compared transduction efficiencies. Also, the effects of polybrene on transduction efficiency and viability of target cells were assessed. Transduction of the eGFP gene was evaluated by observing NIH 3T3 cells under a fluorescence microscope and efficiencies were measured by the percentage of eGFP positive cells using FACscan. Results : As the ratio of retroviral vectors to target cells increased, transduction efficiency was greatly improved, from 7% (1:1) to 38% (1:4). However, transduction efficiency did not increase any more when the ratio increased from 1:4 to 1:8. Cells transfected twice showed higher transduction efficiencies than cells transfected once, at a ratio of 1:8. The eGFP gene transduced to NIH 3T3 cells sustained its expression during repeated passages. However, after the third passage (day 9), the percentage of eGFP positive cells began to decline. The degree of this decline in eGFP expression was lower in cells transfected twice than in cells transfected once (P<0.05). The addition of polybrene did not have any toxic effect on NIH 3T3 cells and greatly increased transduction efficiency (P=0.007). In addition to vector component, transduction efficiency was very sensitive to culture confluence. Cells cultured and transfected in 24-well plate showed higher transduction efficiency, although cells cultured in 6- well plate proliferated more (P=0.024). Conclusion : Our data could be used as a basis for retrovirus-based gene therapy. Further study will follow using human cells as target cells.

High performance Algorithm for extracting and redicting MAP Kinase signaling pathways based on S. cerevisiae rotein-Protein Interaction and Protein location Information (S. cerevisiae 단백질간 상호작용과 세포 내 위치 정보를 활용한 MAP Kinase 신호전달경로추출 및 예측을 위한 고성능 알고리즘 연구)

  • Jo, Mi-Kyung;Kim, Min-Kyung;Park, Hyun-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.3
    • /
    • pp.193-207
    • /
    • 2009
  • Intracellular signal transduction is achieved by protein-protein interaction. In this paper, we suggest high performance algorithm based on Yeast protein-protein interaction and protein location information. We compare if pathways predicted with high valued weights indicate similar tendency with pathways provided in KEGG. Furthermore, we suggest extracted results, which can imply a discovery of new signaling pathways that is yet proven through experiments. This will be a good basis for research to discover new protein signaling pathways and unknown functions of established proteins.

Expression of COX-2 and IDO by Uteroglobin Transduction in NSCLC Cell Lines (비소세포폐암 세포주에서 Uteroglobin Transduction이 COX-2 및 IDO의 발현에 미치는 영향)

  • Park, Gun Min;Lee, Sang-Min;Yim, Jae-Joon;Yang, Seok-Chul;Yoo, Chul Gyu;Lee, Choon-Taek;Han, Sung Koo;Sim, Young-Soo;Kim, Young Whan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.66 no.4
    • /
    • pp.274-279
    • /
    • 2009
  • Background: Uteroglobin (UG) is a secretary protein that has strong immunomodulatory properties, and which is synthesized in most epithelia including lung tissue. Overexpression of UG is associated with decreased expression of cyclooxygenase (COX)-2 and suppression of cancer cell growth. Indoleamine 2,3-dioxygenase (IDO) catalyzes tryptophan along the kynurenine pathway, and both the reduction in local tryptophan and the production of tryptophan metabolites contribute to the immunosuppressive effects of IDO. Methods: In this study, we investigated the pattern of expression of COX-2 and IDO, and the effect of UG transduction in the expression of COX-2 and IDO in several non-small cell lung cancer cell lines, especially A549. Results: Both COX-2 and IDO were constitutionally expressed in A549 and H460 cells, and was reduced by UG transduction. In A549 cells, the slightly increased expression of COX-2 and IDO with the instillation of interferon-gamma (IFN-$\gamma$) was reduced by UG transduction. However, the reduced expression of COX-2 and IDO by UG transduction was not increased with IFN-$\gamma$ instillation in A549 cells. In both the A549 COX-2 sense and the A549 COX-2 anti-sense small interfering RNA (siRNA)-transfected cells, IDO was expressed; expression was reduced by UG transduction, irrespective of the expression of COX-2. Conclusion: The results suggest that the anti-proliferative function of UG may be associated with the immune tolerance pathway of IDO, which is independent of the COX-2 pathway.

Efficacy of Recombinant Baculovirus Vector Reconstructed in pcDNA3.1 Vector (pcDNA3.1 벡터에서 재구성된 재조합 Baculovirus 벡터의 효능)

  • Sa, Young-Hee;Choi, Chang-Shik;Lee, Ki Hwan;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.444-447
    • /
    • 2018
  • Baculovirus expression systems have many known advantages including fast and cost-effective methods to generate large amounts of recombinant proteins in comparison to bacterial expression systems, particularly those requiring complex post-translational modifications. Especially, recombinant baculoviruses can transfer their vectors and express their recombinant proteins in a wide range of mammalian cell types. In this study, baculoviral vectors which were reconstructed from pcDNA3.1 vector, were recombined with cytomegalovirus (CMV) promoter,uroplakin II promoter, polyhedron promoter, vesicular stomatitis virus G (VSVG), enhanced green fluorescent protein (EGFP), and protein transduction domain (PTD). These recombinant vectors were infected with various cells and cell lines. The baculovirus vector thus developed was analyzed by comparing the metastasis and expression of the recombinant genes with conventional vectors. These results suggest that the baculovirus vector has higher efficiency in metastasis and expression than the control vector.

  • PDF

Sequence Analysis and Potential Action of Eukaryotic Type Protein Kinase from Streptomyces coelicolor A3(2)

  • Roy, Daisy R.;Chandra, Sathees B.C.
    • Genomics & Informatics
    • /
    • v.6 no.1
    • /
    • pp.44-49
    • /
    • 2008
  • Protein kinase C (PKC) is a family of kinases involved in the transduction of cellular signals that promote lipid hydrolysis. PKC plays a pivotal role in mediating cellular responses to extracellular stimuli involved in proliferation, differentiation and apoptosis. Comparative analysis of the PKC-${\alpha},{\beta},{\varepsilon}$ isozymes of 200 recently sequenced microbial genomes was carried out using variety of bioinformatics tools. Diversity and evolution of PKC was determined by sequence alignment. The ser/thr protein kinases of Streptomyces coelicolor A3 (2), is the only bacteria to show sequence alignment score greater than 30% with all the three PKC isotypes in the sequence alignment. S.coelicolor is the subject of our interest because it is notable for the production of pharmaceutically useful compounds including anti-tumor agents, immunosupressants and over two-thirds of all natural antibiotics currently available. The comparative analysis of three human isotypes of PKC and Serine/threonine protein kinase of S.coelicolor was carried out and possible mechanism of action of PKC was derived. Our analysis indicates that Serine/ threonine protein kinase from S. coelicolor can be a good candidate for potent anti-tumor agent. The presence of three representative isotypes of the PKC super family in this organism helps us to understand the mechanism of PKC from evolutionary perspective.

$Interferon-{\Upsilon}$ and Lipopolysaccaride Induce Mouse Guanylate-Binding Protein 3 (mGBP3) Expression in the Murine Macrophage Cell Line RAW264-7

  • Han, Byung-Hee
    • Archives of Pharmacal Research
    • /
    • v.22 no.2
    • /
    • pp.130-136
    • /
    • 1999
  • Mouse guanylate-binding protein 3 (mGBP3) is a 71-kDa GTPase which belongs to GTP-binding protein family. The present study showed that the expression of mGBP3 transcript was readily induced in a dose dependent fashion in the macrophage cell line RAW264.7 treated with either $interferon-{\gamma} (IFN-\gamma)$ or lipopolysaccaride (LPS). The expression of mGBP3 protein was also apparent by 4 and 6 h after the treatment of cells with IFN-\gamma (100 U/ml) or LPS ($1{\mu}g/ml$) , and remained at palteau for at least 24 h. Cycloheximide ($10{\mu}g/ml$) had no effect on the $IFN-\gamma-$ or LPS-induced mGBP3 expression, suggesting that the mGBP3 induction did not require further protein synthesis. Interestingly, a protein kinase C (PKC) inhibitor staurosporine (50 nM) abolished the induction of mGBP3 expression by LPS, but not by $IFN-{\gamma}$. These findings suggest that mGBP3 may be involved in the macrophage activation process and both IFN-\gamma and LS induce the mGBP3 expression through distinct signal transduction pathways.

  • PDF

Protein transduction of an antioxidant enzyme: subcellular localization of superoxide dismutase fusion protein in cells

  • Kim, Dae-Won;Kim, So-Young;Lee, Hwa;Lee, Yeum-Pyo;Lee, Min-Jung;Jeong, Min-Seop;Jang, Sang-Ho;Park, Jin-Seu;Lee, Kil-Soo;Kang, Tae-Cheon;Won, Moo-Ho;Cho, Sung-Woo;Kwon, Oh-Shin;Eum, Won-Sik;Choi, Soo-Young
    • BMB Reports
    • /
    • v.41 no.2
    • /
    • pp.170-175
    • /
    • 2008
  • In protein therapy, it is important for exogenous protein to be delivered into the target subcellular localization. To transduce a therapeutic protein into its specific subcellular localization, we synthesized nuclear localization signal (NLS) and membrane translocation sequence signal (MTS) peptides and produced a genetic in-frame SOD fusion protein. The purified SOD fusion proteins were efficiently transduced into mammalian cells with enzymatic activities. Immunofluorescence and Western blot analysis revealed that the SOD fusion proteins successfully transduced into the nucleus and the cytosol in the cells. The viability of cells treated with paraquat was markedly increased by the transduced fusion proteins. Thus, our results suggest that these peptides should be useful for targeting the specific localization of therapeutic proteins in various human diseases.