• 제목/요약/키워드: Protein Pathway Analysis System

검색결과 77건 처리시간 0.022초

Photoperiod sensing system for timing of flowering in plants

  • Lee, Byoung-Doo;Cha, Joon-Yung;Kim, Mi Ri;Paek, Nam-Chon;Kim, Woe-Yeon
    • BMB Reports
    • /
    • 제51권4호
    • /
    • pp.163-164
    • /
    • 2018
  • CONSTANS (CO) induces the expression of FLOWERING LOCUS T (FT) in the photoperiodic pathway, and thereby regulates the seasonal timing of flowering. CO expression is induced and CO protein is stabilized by FLAVIN-BINDING KELCH REPEAT F-BOX PROTEIN 1 (FKF1) in the late afternoon, while CO is degraded by CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) during the night. These regulatory cascades were thought to act independently. In our study, we investigated the relationship between FKF1 and COP1 in the regulation of CO stability in response to ambient light conditions. A genetic analysis revealed that FKF1 acts as a direct upstream negative regulator of COP1, in which cop1 mutation is epistatic to fkf1 mutation in the photoperiodic regulation of flowering. COP1 activity requires the formation of a hetero-tetramer with SUPPRESSOR OF PHYA-105 (SPA1), [$(COP1)_2(SPA1)_2$]. Light-activated FKF1 has an increased binding capacity for COP1, forming a FKF1-COP1 hetero-dimer, and inhibiting COP1 homo-dimerization at its coiled-coil (CC) domain. Mutations in the CC domain result in poor COP1 dimerization and misregulation of photoperiodic floral induction. We propose that FKF1 represses COP1 activity by inhibiting COP1 dimerization in the late afternoon under long-day conditions, resulting in early flowering.

Gene Expression Profiling of the Rewarding Effect Caused by Methamphetamine in the Mesolimbic Dopamine System

  • Yang, Moon Hee;Jung, Min-Suk;Lee, Min Joo;Yoo, Kyung Hyun;Yook, Yeon Joo;Park, Eun Young;Choi, Seo Hee;Suh, Young Ju;Kim, Kee-Won;Park, Jong Hoon
    • Molecules and Cells
    • /
    • 제26권2호
    • /
    • pp.121-130
    • /
    • 2008
  • Methamphetamine, a commonly used addictive drug, is a powerful addictive stimulant that dramatically affects the CNS. Repeated METH administration leads to a rewarding effect in a state of addiction that includes sensitization, dependence, and other phenomena. It is well known that susceptibility to the development of addiction is influenced by sources of reinforcement, variable neuroadaptive mechanisms, and neurochemical changes that together lead to altered homeostasis of the brain reward system. These behavioral abnormalities reflect neuroadaptive changes in signal transduction function and cellular gene expression produced by repeated drug exposure. To provide a better understanding of addiction and the mechanism of the rewarding effect, it is important to identify related genes. In the present study, we performed gene expression profiling using microarray analysis in a reward effect animal model. We also investigated gene expression in four important regions of the brain, the nucleus accumbens, striatum, hippocampus, and cingulated cortex, and analyzed the data by two clustering methods. Genes related to signaling pathways including G-protein-coupled receptor-related pathways predominated among the identified genes. The genes identified in our study may contribute to the development of a gene modeling network for methamphetamine addiction.

Characterization of Gel16 as a Cytochrome P450 in Geldanamycin Biosynthesis and in-silico Analysis for an Endogenous Electron Transport System

  • Rimal, Hemraj;Yu, Sang-Cheol;Lee, Byeongsan;Hong, Young-Soo;Oh, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권1호
    • /
    • pp.44-54
    • /
    • 2019
  • Geldanamycin and its derivatives, inhibitors of heat shock protein 90, are considered potent anticancer drugs, although their biosynthetic pathways have not yet been fully elucidated. The key step of conversion of 4,5-dihydrogeldanamycin to geldanamycin was expected to catalyze by a P450 monooxygenase, Gel16. The adequate bioconversions by cytochrome P450 mostly rely upon its interaction with redox partners. Several ferredoxin and ferredoxin reductases are available in the genome of certain organisms, but only a few suitable partners can operate in full efficiency. In this study, we have expressed cytochrome P450 gel16 in Escherichia coli and performed an in vitro assay using 4,5-dihydrogeldanamycin as a substrate. We demonstrated that the in silico method can be applicable for the efficient mining of convenient endogenous redox partners (9 ferredoxins and 6 ferredoxin reductases) against CYP Gel16 from Streptomyces hygroscopicus. The distances for ligand FDX4-FDR6 were found to be $9.384{\AA}$. Similarly, the binding energy between Gel16-FDX4 and FDX4-FDR6 were -611.88 kcal/mol and -834.48 kcal/mol, respectively, suggesting the lowest distance and binding energy rather than other redox partners. These findings suggest that the best redox partners of Gel16 could be NADPH ${\rightarrow}$ FDR6 ${\rightarrow}$ FDX4 ${\rightarrow}$ Gel16.

해송자 오일의 피부 항노화 및 주름 개선 효과 (Skin Anti-aging and Anti-wrinkle Effects of Pinus koreaiensis Seed Oil)

  • 김형묵;김태준;임동빈;하순봉;김이화;차병선;허효진;소피아브리토;이용문;빈범호;곽병문
    • 한방안이비인후피부과학회지
    • /
    • 제34권4호
    • /
    • pp.1-11
    • /
    • 2021
  • Objectives : The aim of this study was to investigated the anti-aging and anti-wrinkles effects of the pinus koreaiensis seed(PKS) oil. Methods : The anti-oxidant effect was performed by beta-carotene bleaching assay and the intracellular proteome was analyzed expression of each 15 proteins by 2-D electrophoresis. And fatty acid was analysed by gas chromatography. Anti-wrinkle effect was analyzing human skin by the PRIMOS system. Results : Fatty acid analysis of PKS oil has shown oleic acid was 49.7% and linoleic acid was 34.1%. And the antioxidant effect was about 125% compared with alpha-tocoperol(0.1%) by beta carotene bleaching assay. In 2D PAGE analysis, fifteen protein changes in five mechanisms which was collagen synthesis pathway, MMPs, ECM-cell interaction, cytokine, antioxidant enzymes were analyzed. In case of anti-wrinkle effect was proved in vivo by analyzing human skin by the PRIMOS system. The analysis results of eye wrinkles for 4 weeks showed an improvement effect of over 6%. Conclusions : In this study, the amount of protein change in the five mechanism through the cell experiment and the skin anti wrinkle efficacy by the human in vivo test were investigated. As a result pinus koreaiensis seed oil by supercritical extraction could be used as a anti-aging and anti-wrinkle substance for the skin.

Deoxynivalenol- and zearalenone-contaminated feeds alter gene expression profiles in the livers of piglets

  • Reddy, Kondreddy Eswar;Jeong, Jin young;Lee, Yookyung;Lee, Hyun-Jeong;Kim, Min Seok;Kim, Dong-Wook;Jung, Hyun Jung;Choe, Changyong;Oh, Young Kyoon;Lee, Sung Dae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권4호
    • /
    • pp.595-606
    • /
    • 2018
  • Objective: The Fusarium mycotoxins of deoxynivalenol (DON) and zerolenone (ZEN) cause health hazards for both humans and farm animals. Therefore, the main intention of this study was to reveal DON and ZEN effects on the mRNA expression of pro-inflammatory cytokines and other immune related genes in the liver of piglets. Methods: In the present study, 15 six-week-old piglets were randomly assigned to the following three different dietary treatments for 4 weeks: control diet, diet containing 8 mg DON/kg feed, and diet containing 0.8 mg ZEN/kg feed. After 4 weeks, liver samples were collected and sequenced using RNA-Seq to investigate the effects of the mycotoxins on genes and gene networks associated with the immune systems of the piglets. Results: Our analysis identified a total of 249 differentially expressed genes (DEGs), which included 99 upregulated and 150 downregulated genes in both the DON and ZEN dietary treatment groups. After biological pathway analysis, the DEGs were determined to be significantly enriched in gene ontology terms associated with many biological pathways, including immune response and cellular and metabolic processes. Consistent with inflammatory stimulation due to the mycotoxin-contaminated diet, the following Kyoto encyclopedia of genes and genomes pathways, which were related to disease and immune responses, were found to be enriched in the DEGs: allograft rejection pathway, cell adhesion molecules, graft-versus-host disease, autoimmune thyroid disease (AITD), type I diabetes mellitus, human T-cell leukemia lymphoma virus infection, and viral carcinogenesis. Genome-wide expression analysis revealed that DON and ZEN treatments downregulated the expression of the majority of the DEGs that were associated with inflammatory cytokines (interleukin 10 receptor, beta, chemokine [C-X-C motif] ligand 9), proliferation (insulin-like growth factor 1, major facilitator superfamily domain containing 2A, insulin-like growth factor binding protein 2, lipase G, and salt inducible kinase 1), and other immune response networks (paired immunoglobulin-like type 2 receptor beta, Src-like-adaptor-1 [SLA1], SLA3, SLA5, SLA7, claudin 4, nicotinamide N-methyltransferase, thyrotropin-releasing hormone degrading enzyme, ubiquitin D, histone $H_2B$ type 1, and serum amyloid A). Conclusion: In summary, our results demonstrated that high concentrations DON and ZEN disrupt immune-related processes in the liver.

생쥐 대식세포에서 HO-1 발현 유도를 통한 chrysoeriol의 항산화 효과 (Fortified Antioxidative Potential by Chrysoeriol through the Regulation of the Nrf2/MAPK-mediated HO-1 Signaling Pathway in RAW 264.7 Cells)

  • 박충무
    • 생명과학회지
    • /
    • 제28권1호
    • /
    • pp.43-49
    • /
    • 2018
  • Chrysoeriol은 alfalfa에서 주로 발견되는, 식물계에 많이 분포하고 있는 flavone으로 전통의학에서 소화불량, 천식, 비뇨기계 이상의 치료에 사용되어 왔다. 최근의 연구에서는 항염증 효과가 있는 것으로 밝혀졌으나 항산화 효과에 대한 분석은 없었다. 본 연구에서는 chrysoeriol의 항산화 효과와 그 분자적 기전을 RAW 264.7 cell에서 세포생존율, reactive oxygen species (ROS)와 Western blot분석을 통해 알아보고자 하였다. Chrysoeriol은 lipopolysaccharide(LPS)에 의해 발생한 ROS를 세포독성없이 농도의존적으로 제거하였다. 그리고 항산화효과를 보이는 2상 효소 중 하나인 heme oxygenase (HO)-1의 발현을 강하게 유도하였고, 그와 동시에 전사인자인 Nrf2의 핵내 이동도 촉진하는 것으로 밝혀졌다. 특히, 산화스트레스에 대한 세포내 산화환원항상성 유지에 중요한 역할을 하고 있는 것으로 알려진 mitogen activated protein kinase (MAPK)와 phosphoinositide 3-kinase (PI3K)의 분석결과, chrysoeriol은 extracellular signal regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK)와 p38의 인산화를 통해 HO-1의 발현을 유도하는 것으로 나타났다. HO-1에 의한 항산화 효과를 확인하기 위하여 chrysoeriol을 전처리한 후 t-BHP에 의한 산화 스트레스에 세포를 노출시킨 결과, chrysoeriol 처리에 의해 세포사멸이 줄어드는 것을 확인하였고, HO-1의 유도제와 억제제의 처리에 따라 세포생존율 또한 조절되는 것을 확인할 수 있었다. 따라서, chrysoeriol은 HO-1의 발현을 유도하여 항산화 효과를 높이고 이것은 Nrf2/MAPK 신호전달 체계에 의한다는 것을 알 수 있었다.

Enhancement of antimicrobial peptide genes expression in Cactus mutated Bombyx mori cells by CRISPR/Cas9

  • Park, Jong Woo;Yu, Jeong Hee;Kim, Seong-Wan;Kweon, Hae Yong;Choi, Kwang-Ho;Kim, Seong-Ryul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제37권1호
    • /
    • pp.21-28
    • /
    • 2018
  • CRISPR/Cas9 gene editing system is an efficient method to mutation in a sequence specific manner. Here we report the direct transfection of the Cas9 nuclease and gene specific guide RNA can be used in BM-N cell line derived from Bombyx mori ovarian tissue to enfeeble function of endogenous gene in vitro. We have used gene editing system to negative regulation components of major signaling cascade, the Toll pathway, which controls B. mori resistance to microbe infections, such as fungi and gram positive bacteria. We demonstrate that the $I{\kappa}B-like$ protein Cactus may controls the activation of transcription factors such as Rel A and Rel B. The direct transfection of Cas9 nuclease and Cactus-specific guide-RNA complex may be used in BM-N cells to disrupt the function of endogenous genes in vitro. A mutation frequency of 30-40% was observed in the transfected cells, and various mutations caused the target region. Moreover, RT-PCR analysis revealed that Cactus gene was down regulated after these mutations. More importantly, mutation of BmCactus stimulated expression of lysozyme, moricin, and lebocin genes. These results suggest that the CRISPR/Cas9 systems are expected to efficiently induce site-specific mutations and it was possible to produce antimicrobial peptide through the gene editing.

The increasing hematopoietic effect of the combined treatment of Korean Red Ginseng and Colla corii asini on cyclophosphamide-induced immunosuppression in mice

  • Lee, Yuan Yee;Irfan, Muhammad;Quah, Yixian;Saba, Evelyn;Kim, Sung-Dae;Park, Seung-Chun;Jeong, Myung-Gyun;Kwak, Yi-Seong;Rhee, Man Hee
    • Journal of Ginseng Research
    • /
    • 제45권5호
    • /
    • pp.591-598
    • /
    • 2021
  • Background: Hematopoiesis is the production of blood cells from hematopoietic stem cells (HSCs) that reside in the bone marrow. Cyclophosphamide (CTX) is a chemotherapy drug that suppresses the immune system. Korean Red Ginseng (KRG) and Colla corii asini (CCA) have been traditionally used for boosting the immune system. Methods: HSCs in the bone marrow, and immune cell subtype in splenocytes, PBMCs, and thymocytes were investigated. Serum levels of hematopoietic-related markers were analyzed using ELISA. Protein expression in spleen tissue was analyzed using western blot analysis. Hematoxylin & eosin staining in the femurs of mice were also conducted. Results: The combination of KRG and CCA with a ratio of 3:2 increased HSCs, CD3 and CD8+ T cells in the circulation, and CD3 T cells in the spleen. A ratio of 2:3 (KRG:CCA) increased the thymic regulatory T cells and recovered the CD3 T cells in the spleen and circulation while recovering proteins in the JAK-STAT pathway in the spleen. Overall, blood cell population and differentiating factors vital for cell differentiation were also significantly recovered by all combinations especially in ratios of 3:2 and 2:3. Conclusion: A ratio of 3:2 (KRG:CCA) is the most ideal combination as it recovered the HSC population in the bone marrow of mice.

마우스 단핵 탐식 세포에서 Nitric oxide 생성의 조절 기전에 관한 연구 (Studies on the Regulation of Nitric oxide Synthesis in Murine Mononuclear Phagocytes)

  • 최병기;김수응
    • Environmental Analysis Health and Toxicology
    • /
    • 제15권3호
    • /
    • pp.69-80
    • /
    • 2000
  • ADP-rubosylation may be involved in the process of macrophage activation. Nitric oxide (NO) has emerged as an important intracellular and interacellular regulatory molecule with function as diverse as vasodilation, neural communication or host defense. NO is derived from the oxidation of the terminal guanidino nitrogen atom of L-arginine by the NADPH -dependent enzyme, nitric oxide synthase (NOS) which is one of the three different isomers in mammalian tissues. Since NO can exert protective or regulatory functions in the cell at a low concentration while toxic effects at higher concentrations, its role may be tightly regulated in the cell. Therefore, this paper was focused on signal transduction pathway of NO synthesis, role of endogenous TGF-$\beta$ in NO production. effect of NO on superoxide formation. Costimulation of murine peritoneal macrophages with interferon-gamma (IFN-γ) and phorbol 12-myristate 13-acetate (PMA) increased both NO secretion and mRNA expression of inducible nitric oxide synthase (iNOS) when PMA abolished costimulation. Pretreatmnet of the cells with PMA abolished costimuation effects due to the depletion of protein kinase C (PKC) activities . The involvement of PKC in NO secretion could be further confirmed by PKC inhibitor, stauroprine, and phorbol ester derivative, phorbol 12,13-didecanoate. Addition of actinomycine D in IFN-γ plus PMA stimulated cells inhibited both NO secretion and mRNA expression of iNOS indication that PMA stabilizes mRNA of iNOS . Exogenous TGF-$\beta$ reduced NO secretion in IFN -γ stimulated murine macrophages. However addition of antisense oligodeoxynucleotide (ODN) to TGF-$\beta$ to this system recovered the ability of NO production and inhibited mRNA expression of TGF-$\beta$. ACAS interactive laser cytometry analysis showed that transportation of FITC -labeled antisense ODN complementary to TGF-$\beta$ mRNA could be observed within 5 min and reached maximal intensity in 30 min in the murine macrophage cells. NO released by activated macrophages inhibits superoxide formation in the same cells . This inhibition nay be related on NO-induced auto -adenosine diphosphate (ADP) -ribosylation . In addition, ADP-ribosylation may be involved in the process of macrophage activation .

  • PDF

Genome-Wide Transcriptomic Analysis of n-Caproic Acid Production in Ruminococcaceae Bacterium CPB6 with Lactate Supplementation

  • Lu, Shaowen;Jin, Hong;Wang, Yi;Tao, Yong
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권11호
    • /
    • pp.1533-1544
    • /
    • 2021
  • n-Caproic acid (CA) is gaining increased attention due to its high value as a chemical feedstock. Ruminococcaceae bacterium strain CPB6 is an anaerobic mesophilic bacterium that is highly prolific in its ability to perform chain elongation of lactate to CA. However, little is known about the genome-wide transcriptional analysis of strain CPB6 for CA production triggered by the supplementation of exogenous lactate. In this study, cultivation of strain CPB6 was carried out in the absence and presence of lactate. Transcriptional profiles were analyzed using RNA-seq, and differentially expressed genes (DEGs) between the lactate-supplemented cells and control cells without lactate were analyzed. The results showed that lactate supplementation led to earlier CA p,roduction, and higher final CA titer and productivity. 295 genes were substrate and/or growth dependent, and these genes cover crucial functional categories. Specifically, 5 genes responsible for the reverse β-oxidation pathway, 11 genes encoding ATP-binding cassette (ABC) transporters, 6 genes encoding substrate-binding protein (SBP), and 4 genes encoding phosphotransferase system (PTS) transporters were strikingly upregulated in response to the addition of lactate. These genes would be candidates for future studies aiming at understanding the regulatory mechanism of lactate conversion into CA, as well as for the improvement of CA production in strain CPB6. The findings presented herein reveal unique insights into the biomolecular effect of lactate on CA production at the transcriptional level.