• Title/Summary/Keyword: Protein Mutation

Search Result 564, Processing Time 0.025 seconds

Evolution of E. coli Phytase for Increased Thermostability Guided by Rational Parameters

  • Li, Jiadi;Li, Xinli;Gai, Yuanming;Sun, Yumei;Zhang, Dawei
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.419-428
    • /
    • 2019
  • Phytases are enzymes that can hydrolyze phytate and its salts into inositol and phosphoric acid, and have been utilized to increase the availability of nutrients in animal feed and mitigate environmental pollution. However, the enzymes' low thermostability has limited their application during the feed palletization process. In this study, a combination of B-value calculation and protein surface engineering was applied to rationally evolve the heat stability of Escherichia coli phytase. After systematic alignment and mining for homologs of the original phytase from the histidine acid phosphatase family, the two models 1DKL and 1DKQ were chosen and used to identify the B-values and spatial distribution of key amino acid residues. Consequently, thirteen potential amino acid mutation sites were obtained and categorized into six domains to construct mutant libraries. After five rounds of iterative mutation screening, the thermophilic phytase mutant P56214 was finally yielded. Compared with the wild-type, the residual enzyme activity of the mutant increased from 20% to 75% after incubation at $90^{\circ}C$ for 5 min. Compared with traditional methods, the rational engineering approach used in this study reduces the screening workload and provides a reference for future applications of phytases as green catalysts.

A Mutation of a Putative NDP-Sugar Epimerase Gene in Ralstonia pseudosolanacearum Attenuates Exopolysaccharide Production and Bacterial Virulence in Tomato Plant

  • Hyoung Ju Lee;Sang-Moo Lee;Minseo Choi;Joo Hwan Kwon;Seon-Woo Lee
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.417-429
    • /
    • 2023
  • Ralstonia solanacearum species complex (RSSC) is a soil borne plant pathogen causing bacterial wilt on various important crops, including Solanaceae plants. The bacterial pathogens within the RSSC produce exopolysaccharide (EPS), a highly complicated nitrogencontaining heteropolymeric polysaccharide, as a major virulence factor. However, the biosynthetic pathway of the EPS in the RSSC has not been fully characterized. To identify genes in EPS production beyond the EPS biosynthetic gene operon, we selected the EPS-defective mutants of R. pseudosolanacearum strain SL341 from Tn5-inserted mutant pool. Among several EPSdefective mutants, we identified a mutant, SL341P4, with a Tn5-insertion in a gene encoding a putative NDP-sugar epimerase, a putative membrane protein with sugar-modifying moiety, in a reverse orientation to EPS biosynthesis gene cluster. This protein showed similar to other NDP-sugar epimerases involved in EPS biosynthesis in many phytopathogens. Mutation of the NDP-sugar epimerase gene reduced EPS production and biofilm formation in R. pseudosolanacearum. Additionally, the SL341P4 mutant exhibited reduced disease severity and incidence of bacterial wilt in tomato plants compared to the wild-type SL341 without alteration of bacterial multiplication. These results indicate that the NDP-sugar epimerase gene is required for EPS production and bacterial virulence in R. pseudosolanacearum.

Mutation of the Chk1 Gene in Gastric Cancers with Microsatellite Instability (현미부수체 불안정성을 동반한 위암에서 Chk1 유전자의 돌연변이)

  • Lee, Jong-Heun;Cho, Young-Gu;Song, Jae-Whie;Park, Cho-Hyun;Kim, Su-Yeong;Nam, Suk-Woo;Lee, Sug-Hyung;Yoo, Nam-Jin;Lee, Jung-Young;Park, Won-Sang
    • Journal of Gastric Cancer
    • /
    • v.5 no.4 s.20
    • /
    • pp.260-265
    • /
    • 2005
  • Purpose: The protein kinase Chk1 is required for cell cycle arrest in response to DNA damage and is shown to play an important role in the G2/M checkpoint. The aim of this study was to investigate the relationship between microsatellite instability and frameshift mutation of the Chk1 gene in gastric cancers. Materials and Methods: The microsatellite instability was analyzed in 95 primary gastric carcinomas by using microdissection and 6 microsatellite markers. We also peformed single strand conformational polymorphism and sequencing to detect frameshift mutation of the Chk1 gene. Results: We found positive microsatellite instability in 19 (20%) of the 95 gastric cancers, 13 high- and 6 low-frequency microsatellite instability cases. The frameshift mutation of Chk1, which resulted in a truncated Chk1 protein, was detected in two high-frequency microsatellite instability cases. Conclusion: These data suggest that the microsatellite instability may contribute to the development of gastric carcinomas through inactivation of Chk1.

  • PDF

Common Docking Domain Mutation E322K of the ERK2 Gene is Infrequent in Oral Squamous Cell Carcinomas

  • Valiathan, Gopalakrishnan Mohan;Thenumgal, Siji Jacob;Jayaraman, Bhaskar;Palaniyandi, Arunmozhi;Ramkumar, Hemalatha;Jayakumar, Keerthivasan;Bhaskaran, Sajeev;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6155-6157
    • /
    • 2012
  • Background: Mutations in the MAPK (Mitogen Activated Protein Kinase) signaling pathway - EGFR/Ras/RAF/MEK have been associated with the development of several carcinomas. ERK2, a downstream target of the MAPK pathway and a founding member of the MAPK family is activated by cellular signals emanating at the cell membrane. Activated ERK2 translocates into the nucleus to transactivate genes that promote cell proliferation. MKP - a dual specific phosphatase - interacts with activated ERK2 via the common docking (CD) domain of the later to inactivate (dephosphorylate) and effectively terminate further cell proliferation. A constitutively active form of ERK2 carrying a single point mutation - E322K in its CD domain, was earlier reported by our laboratory. In the present study, we investigated the prevalence of this CD domain E322K mutation in 88 well differentiated OSCC tissue samples. Materials and Method: Genomic DNA specimens isolated from 88 oral squamous cell carcinoma tissue samples were amplified with primers flanking the CD domain of the ERK2 gene. Subsequently, PCR amplicons were gel purified and subjected to direct sequencing to screen for mutations. Results: Direct sequencing of eighty eight OSCC samples identified an E322K CD domain mutation in only one (1.1%) OSCC sample. Conclusions: Our result indicates that mutation in the CD domain of ERK2 is rare in OSCC patients, which suggests the role of genetic alterations in other mitogenic genes in the development of carcinoma in the rest of the patients. Nevertheless, the finding is clinically significant, as the relatively rare prevalence of the E322K mutation in OSCC suggests that ERK2, being a common end point signal in the multi-hierarchical mitogen activated signaling pathway may be explored as a viable drug target in the treatment of OSCC.

HpkA, a Histidine Protein Kinase Homolog, is Required for Fruiting Body Development in Myxococcus xanthus

  • Park, Sooyeon;Kim, Jihoon;Lee, Bongsoo;Zusman, David R;Cho, Kyungyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.400-405
    • /
    • 2003
  • A gene (hpkA), encoding a histidine protein kinase homolog, has been identified in the upstream region of the espAB operon in Myxococcus xanthus. It encodes a 333 amino acid (35,952 Da) protein with a histidine protein kinase domain in the region from amino acid 90 to 317. Null mutations in the hpkA gene caused formation of loose irregular fruiting bodies, while wild-type strains developed tight hemispherical fruiting bodies under developmental conditions. Sporulation of the hpkA mutant was delayed by at least 12 h compared to that of the wild-type. It appeared that the hpkA mutation increased the expression of the espAB operon by more than 2-fold compared with the wild-type under developmental conditions. Expression of the hpkA gene was low under vegetative conditions, but was highly induced under developmental conditions.

Kinetic analysis of Drosophila Vnd protein containing homeodomain with its target sequence

  • Yoo, Si-Uk
    • BMB Reports
    • /
    • v.43 no.6
    • /
    • pp.407-412
    • /
    • 2010
  • Homeodomain (HD) is a highly conserved DNA-binding domain composed of helix-turn-helix motif. Drosophila Vnd (Ventral nervous system defective) containing HD acts as a regulator to either enhance or suppress gene expression upon binding to its target sequence. In this study, kinetic analysis of Vnd binding to DNA was performed. The result demonstrates that DNA-binding affinity of the recombinant protein containing HD and NK2-specific domain (NK2-SD) was higher than that of the full-length Vnd. To access whether phosphorylation sites within HD and NK2-SD affect the interaction of the protein with the target sequence, alanine substitutions were introduced. The result shows that S631A mutation within NK2-SD does not contribute significantly to the DNA-binding affinity. However, S571A and T600A mutations within HD showed lower affinity for DNA binding. In addition, DNA-binding analysis using embryonic nuclear protein also demonstrates that Vnd interacts with other nuclear proteins, suggesting the existence of Vnd as a complex.

Birt-Hogg-Dubé Syndrome Manifesting as Spontaneous Pneumothorax: A Novel Mutation of the Folliculin Gene

  • Kim, Kyung Soo;Choi, Hang Jun;Jang, Woori;Chae, Hyojin;Kim, Myungshin;Moon, Seok Whan
    • Journal of Chest Surgery
    • /
    • v.50 no.5
    • /
    • pp.386-390
    • /
    • 2017
  • $Birt-Hogg-Dub{\acute{e}}$ syndrome (BHDS) is a rare disease with autosomal dominant inheritance that manifests through skin tumors, pulmonary cystic lesions, and renal tumors. A mutation of FLCN located on chromosome 17p11.2, which encodes a tumor-suppressor protein (folliculin), is responsible for the development of BHDS. We report the case of a patient presenting with spontaneous pneumothorax, in whom a familial genetic study revealed a novel nonsense mutation: $p.(Arg379^*)$ in FLCN.

Biochemical Properties of Second Site Mutation of Human Immunodeficiency Virus Integrase

  • Kim, Do-Jin;Oh, You-Take;Lee, Sang-Kwang;Shin, Cha-Gyun
    • BMB Reports
    • /
    • v.32 no.6
    • /
    • pp.599-604
    • /
    • 1999
  • A highly conserved amino acid, glutamic acid (Glu), present at position 152 in the catalytic domain of the human immunodeficiency virus type 1 (HIV-1) integrase (IN) protein has been known to be critical for enzymatic function since substitution of Glu 152 with other residues results in a complete loss of enzymatic activities. In order to better understand the role of Glu 152 as a conserved residue in enzymatic action, intragenic second site mutations have been introduced around residue 152 of a mutant IN (E152A), and their biochemical properties were analyzed in terms of enzymatic activities. Disintegration activities were found to be significantly restored in several second site mutant INs, while integration activities were only recovered weakly. However, endonucleolytic activities were not discovered in all the mutant INs. These findings indicate that the second site mutations can partially restore that catalytic structure of the active site disturbed by the E152A mutation and lead to the regaining of integration and disintegration activities. In addition, it is also suggested that endonucleolytic activity requires a more accurate structure of the catalytic site than that for the integration and disintegration activities.

  • PDF

A case of familial X-linked thrombocytopenia with a novel WAS gene mutation

  • Lee, Eu Kyoung;Eem, Yeun-Joo;Chung, Nack-Gyun;Kim, Myung Shin;Jeong, Dae Chul
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.6
    • /
    • pp.265-268
    • /
    • 2013
  • Wiskott-Aldrich syndrome (WAS) is an inherited X-linked disorder. The WAS gene is located on the X chromosome and undergoes mutations, which affect various domains of the WAS protein, resulting in recurrent infection, eczema, and thrombocytopenia. However, the clinical features and severity of the disease vary according to the type of mutations in the WAS gene. Here, we describe the case of a 4-year-old boy with a history of marked thrombocytopenia since birth, who presented with recurrent herpes simplex infection and late onset of eczema. Examination of his family history revealed that older brother, who died from intracranial hemorrhage, had chronic idiopathic thrombocytopenia. Therefore, we proceeded with genetic analysis and found a new deletion mutation in the WAS gene: c.858delC (p.ser287Leufs$^*21$) as a hemizygous form.

Isolation of Lipid High-yielding Chlorella vulgaris Mutants by UV Irradiation (자외선 조사에 의한 지질 고생산성 Chlorella vulgaris 변이주 분리)

  • Jeong, Haeng Soon;Choi, Min Kyung;Choi, Tae-O;Lee, Jae-Hwa
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.26-30
    • /
    • 2014
  • Chlorella vulgaris, a genus of single-cell green algae, is considered to be a very essential resource for the higher value-added business including functional food and biodiesel, due to its high contents of protein, carbohydrate and lipid. In this study, ultraviolet rays were irradiated in order to induce the mutation of C. vulgaris. After inducing the mutation, UV1-20 mutant, high in lipid was selected and its cell growth rate, dry weight, pigment content and lipid content were measured. The growth rate of the UV1-20 mutant was increased almost 1.5 times than the wild type, but pigment contents of chlorophyll and carotinoid were decreased. In addition, the lipid content of UV1-20 was increased 1.8 times than the wild type. Therefore, C. vulgaris mutant, isolated in this study, is considered to have sufficient potential to be used as a material for the higher value-added business.