• Title/Summary/Keyword: Protein Kinase A

Search Result 2,491, Processing Time 0.031 seconds

Calcium/calmodulin-dependent protein kinase II is involved in the transmission and regulation of nociception in naïve and morphine-tolerant rat nucleus accumbens

  • Kai Wen Xi;De Duo Chen;Xin Geng;Yan Bian;Min Xin Wang;Hui Bian
    • The Korean Journal of Pain
    • /
    • v.36 no.2
    • /
    • pp.163-172
    • /
    • 2023
  • Background: Synaptic plasticity contributes to nociceptive signal transmission and modulation, with calcium/calmodulin-dependent protein kinase II (CaMK II) playing a fundamental role in neural plasticity. This research was conducted to investigate the role of CaMK II in the transmission and regulation of nociceptive information within the nucleus accumbens (NAc) of naïve and morphine-tolerant rats. Methods: Randall Selitto and hot-plate tests were utilized to measure the hindpaw withdrawal latencies (HWLs) in response to noxious mechanical and thermal stimuli. To induce chronic morphine tolerance, rats received intraperitoneal morphine injection twice per day for seven days. CaMK II expression and activity were assessed using western blotting. Results: Intra-NAc microinjection of autocamtide-2-related inhibitory peptide (AIP) induced an increase in HWLs in naïve rats in response to noxious thermal and mechanical stimuli. Moreover, the expression of the phosphorylated CaMK II (p-CaMK II) was significantly decreased as determined by western blotting. Chronic intraperitoneal injection of morphine resulted in significant morphine tolerance in rats on Day 7, and an increase of p-CaMK II expression in NAc in morphine-tolerant rats was observed. Furthermore, intra-NAc administration of AIP elicited significant antinociceptive responses in morphine-tolerant rats. In addition, compared with naïve rats, AIP induced stronger thermal antinociceptive effects of the same dose in rats exhibiting morphine tolerance. Conclusions: This study shows that CaMK II in the NAc is involved in the transmission and regulation of nociception in naïve and morphine-tolerant rats.

Analysis of Dual Phosphorylation of Hog1 MAP Kinase in Saccharomyces cerevisiae Using Quantitative Mass Spectrometry

  • Choi, Min-Yeon;Kang, Gum-Yong;Hur, Jae-Young;Jung, Jin Woo;Kim, Kwang Pyo;Park, Sang-Hyun
    • Molecules and Cells
    • /
    • v.26 no.2
    • /
    • pp.200-205
    • /
    • 2008
  • The mitogen-activated protein kinase (MAPK) signaling pathway is activated in response to extracellular stimuli and regulates various activities in eukaryotic cells. Following exposure to stimuli, MAPK is known to be activated via dual phosphorylation at a conserved TxY motif in the activation loop; both threonine and tyrosine residues are phosphorylated by an upstream kinase. However, the mechanism underlying dual phosphorylation is not clearly understood. In the budding yeast Saccharomyces cerevisiae, the Hog1 MAPK mediates the high-osmolarity glycerol (HOG) signaling pathway. Tandem mass spectrometry and phosphospecific immunoblotting were performed to quantitatively monitor the dynamic changes occurring in the phosphorylation status of the TxY motif of Hog1 on exposure to osmotic stress. The results of our study suggest that the tyrosine residue is preferentially and dynamically phosphorylated following stimulation, and this in turn leads to the dual phosphorylation. The tyrosine residue was hyperphosphorylated in the absence of a threonine residue; this result suggests that the threonine residue is critical for the control of signaling noise and adaptation to osmotic stress.

Molecular Mechanism of Reactive Oxygen Species-dependent ASK1 Activation in Innate Immunity

  • Yamauchi, Shota;Noguchi, Takuya;Ichijo, Hidenori
    • IMMUNE NETWORK
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Apoptosis signal-regulating kinase 1 (ASK1), a mitogen- activated protein kinase kinase kinase, plays pivotal roles in stress responses. In addition, ASK1 has emerged as a key regulator of immune responses elicited by pathogen-associated molecular patterns (PAMPs) and endogenous danger signals. Recent studies have demonstrated that reactive oxygen species (ROS)-dependent activation of ASK1 is required for LPS-stimulated cytokine production as well as extracellular ATP-induced apoptosis in immune cells. The mechanism of ROS-dependent regulation of ASK1 activity by thioredoxin and TRAFs has been well characterized. In this review, we focus on the molecular details of the activation of ASK1 and its involvement in innate immunity.

Proliferative and Synthetic Responses of Airway Smooth Muscle in Asthma (천식에서 기도평활근의 증식과 합성 반응에 대한 최신지견)

  • Shim, Jung Yeon
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.6
    • /
    • pp.580-587
    • /
    • 2005
  • New evidence is emerging that airway smooth muscle(ASM) may act as an immunomodulatory cell by providing pro-inflammatory cytokines and chemokines, polypeptide growth factors, extracellular matrix proteins, cell adhesion receptors and co-stimulatory molecules. ASM can promote the formation of the interstitial extracellular matrix, and potentially contribute to the alterations within the extracellular matrix in asthma. In addition, extracellular matrix components can alter the proliferative, survival, and cytoskeletal synthetic function of ASM cells through integrin-directed signaling. Increased ASM mass is one of the most important features of the airway wall remodeling process in asthma. Three different mechanisms may contribute to the increased ASM mass : cell proliferation, increased migration and decreased rate of apoptosis. The major signaling pathways of cell proliferation activated by ASM mitogens are those dependent on extracellular signal-regulated kinase and phosphoinositide 3'-kinase. The key signaling mechanisms of cell migration have been identified as the p38 mitogen-activated protein kinase and the p21-activated kinase 1 pathways. ASM cells contain ${\beta}2$-adrenergic receptors and glucocorticoid receptors. They may represent a key target for ${\beta}2$-adrenergic receptor agonist/corticosteroid interactions which have antiproliferative activity against a broad spectrum of mitogens.

Inhibition of the DevSR Two-Component System by Overexpression of Mycobacterium tuberculosis PknB in Mycobacterium smegmatis

  • Bae, Hyun-Jung;Lee, Ha-Na;Baek, Mi-Na;Park, Eun-Jin;Eom, Chi-Yong;Ko, In-Jeong;Kang, Ho-Young;Oh, Jeong-Il
    • Molecules and Cells
    • /
    • v.40 no.9
    • /
    • pp.632-642
    • /
    • 2017
  • The DevSR (DosSR) two-component system, which is a major regulatory system involved in oxygen sensing in mycobacteria, plays an important role in hypoxic induction of many genes in mycobacteria. We demonstrated that overexpression of the kinase domain of Mycobacterium tuberculosis (Mtb) PknB inhibited transcriptional activity of the DevR response regulator in Mycobacterium smegmatis and that this inhibitory effect was exerted through phosphorylation of DevR on Thr180 within its DNA-binding domain. Moreover, the purified kinase domain of Mtb PknB significantly phosphorylated RegX3, NarL, KdpE, TrcR, DosR, and MtrA response regulators of Mtb that contain the Thr residues corresponding to Thr180 of DevR in their DNA-binding domains, implying that transcriptional activities of these response regulators might also be inhibited when the kinase domain of PknB is overexpressed.

Insulin Cannot Activate Extracellular-signal-related Kinase Due to Inability to Generate Reactive Oxygen Species in SK-N-BE(2) Human Neuroblastoma Cells

  • Hwang, Jung-Jin;Hur, Kyu Chung
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.280-287
    • /
    • 2005
  • The insulin-mediated Ras/mitogen-activated protein (MAP) kinase cascade was examined in SK-N-BE(2) and PC12 cells, which can and cannot produce reactive oxygen species (ROS), respectively. Tyrosine phosphorylation of the insulin receptor and insulin receptor substrate 1 (IRS-1) was much lower in SK-N-BE(2) cells than in PC12 cells when the cells were treated with insulin. The insulin-mediated interaction of IRS-1 with Grb2 was observed in PC12 but not in SK-N-BE(2) cells. Moreover, the activity of extracellular-signal-related kinase (ERK) was much lower in SK-N-BE(2) than in PC12 cells when the cells were treated with insulin. Application of exogenous $H_2O_2$ caused increased tyrosine phosphorylation and Grb2 binding to IRS-1 in SK-N-BE(2) cells, while exposure to an $H_2O_2$ scavenger (N-acetylcysteine) or to a phophatidylinositol-3 kinase inhibitor (wortmannin), and expression of a dominant negative Rac1, decreased the activation of ERK in insulin-stimulated PC12 cells. These results indicate that the transient increase of ROS is needed to activate ERK in insulin-mediated signaling and that an inability to generate ROS is the reason for the insulin insensitivity of SK-N-BE(2) cells.

Shikonin Modulates Cell Proliferation by Inducing Apoptosis in LLC Cells via MAPK Regulation and Caspase Activation

  • Lee, Soo-Jin;Kim, Sung-Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.501-507
    • /
    • 2005
  • Shikonin is a chemically characterized component of traditional herbal medicine, the root of Lithospermum erythrorhizon and has been shown to possess antitumor activities. Here we investigated anticancer potential of shikonin and its possible mechanism of action in LLC cells. Shikonin inhibited the proliferation of LLC cells in a concentration-dependent manner. It was also demonstrated that shikonin induced apoptosis in LLC cells by Annexin V staining and TUNEL staining analysis. Shikonin treatment was caused that decrease of Bcl-2, activation of caspases and cleavage of PARP. And shikonin also induced that the activation of mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38. Interestingly, the cell proliferation inhibition induced by shikonin was recovered by specific inhibitors of JNK and p38 but the inhibitor of MEK, the upstream kinase of ERK, did not recover. Additionally, shikonin administration at doses of 5 mg/kg in C57BL/6 mice strongly inhibited the primary tumor growth of LLC. Taken together, these results suggest that shikonin may suppress LLC cell proliferation by inducing an apoptotic process via activation of caspases and MAPKs

Epigallocatechin Gallate Activates Phospholipase D in Glioma Cells (교세포에서 Epigallocatechin Gallate에 의한 포스포리파제 D의 활성화)

  • Kim, Shi-Yeon;Kim, Joonmo;Min, Do-Sik
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.924-932
    • /
    • 2003
  • Epigallocatechin-3 Gallate (EGCG), a major constituent of green tea, has attracted increasing interest because of its many reported health benefits. Here we demonstrate for the first time that EGCG stimulates phospholipase D (PLD) activity in U87 human astroglioma cells. EGCG-induced PLD activation was abolished by the phospholipase C (PLC) inhibitor and a lipase inactive PLC-\gama1$ mutant, and was dependent on intracellular $Ca^{ 2+}$, and possibly involved $Ca^{ 2+}$ calmodulin-dependent protein kinase II (CaM kinase II). Interestingly, EGCG induced translocation of PLC-\gama1$ from the cytosol to the membrane and PLC-\gama1$interaction with PLD1. Taken together, these results demonstrate for the first time that in human astroglioma cells, EGCG regulates PLD activity via a signaling pathway involving a PLC-\gama1$ (inositol 1,4,5-trisphosphate-$Ca^{ 2+}$)-CaM kinase II-PLD pathway.

A possible mechanism to the antidepressant-like effects of 20 (S)-protopanaxadiol based on its target protein 14-3-3 ζ

  • Chen, Lin;Li, Ruimei;Chen, Feiyan;Zhang, Hantao;Zhu, Zhu;Xu, Shuyi;Cheng, Yao;Zhao, Yunan
    • Journal of Ginseng Research
    • /
    • v.46 no.5
    • /
    • pp.666-674
    • /
    • 2022
  • Background: Ginsenosides and their metabolites have antidepressant-like effects, but the underlying mechanisms remain unclear. We previously identified 14-3-3 ζ as one of the target proteins of 20 (S)-protopanaxadiol (PPD), a fully deglycosylated ginsenoside metabolite. Methods: Corticosterone (CORT) was administered repeatedly to induce the depression model, and PPD was given concurrently. The tail suspension test (TST) and the forced swimming test (FST) were used for behavioral evaluation. All mice were sacrificed. Golgi-cox staining, GSK 3β activity assay, and Western blot analysis were performed. In vitro, the kinetic binding analysis with the Biolayer Interferometry (BLI) was used to determine the molecular interactions. Results: TST and FST both revealed that PPD reversed CORT-induced behavioral deficits. PPD also ameliorated the CORT-induced expression alterations of hippocampal Ser9 phosphorylated glycogen synthase kinase 3β (p-Ser9 GSK 3β), Ser133 phosphorylated cAMP response element-binding protein (p-Ser133 CREB), and brain-derived neurotrophic factor (BDNF). Moreover, PPD attenuated the CORT-induced increase in GSK 3β activity and decrease in dendritic spine density in the hippocampus. In vitro, 14-3-3 ζ protein specifically bound to p-Ser9 GSK 3β polypeptide. PPD promoted the binding and subsequently decreased GSK 3β activity. Conclusion: These findings demonstrated the antidepressant-like effects of PPD on the CORT-induced mouse depression model and indicated a possible target-based mechanism. The combination of PPD with the 14-3-3 ζ protein may promote the binding of 14-3-3 ζ to p-GSK 3β (Ser9) and enhance the inhibition of Ser9 phosphorylation on GSK 3β kinase activity, thereby activating the plasticity-related CREBeBDNF signaling pathway.

FSCB phosphorylation in mouse spermatozoa capacitation

  • Liu, Shun-Li;Ni, Bing;Wang, Xiang-Wei;Huo, Wen-Qian;Zhang, Jun;Tian, Zhi-Qiang;Huang, Ze-Min;Tian, Yi;Tang, Jun;Zheng, Yan-Hua;Jin, Feng-Shuo;Li, Yan-Feng
    • BMB Reports
    • /
    • v.44 no.8
    • /
    • pp.541-546
    • /
    • 2011
  • It is generally accepted that spermatozoa capacitation is associated with protein kinase A-mediated tyrosine phosphorylation. In our previous study, we identified the fibrous sheath CABYR binding protein (FSCB), which was phosphorylated by PKA. However, the phosphorylation status of FSCB protein during spermatozoa capacitation should be further investigated. To this aim, in this study, we found that phosphorylation of this 270-kDa protein occurred as early as 1 min after mouse spermatozoa capacitation, which increased over time and remained stable after 60 min. Immunoprecipitation assays demonstrated that the tyrosine and Ser/Thr phosphorylation of FSCB occurred during spermatozoa capacitation. The extent of phosphorylation and was closely associated with the PKA activity and spermatozoa motility characteristics. FSCB phosphorylation could be induced by PKA agonist DB-cAMP, but was blocked by PKA antagonist H-89.Therefore, FSCB contributes to spermatozoa capacitation in a tyrosine-phosphorylated format, which may help in further elucidating the molecular mechanism of spermatozoa capacitation.