DOI QR코드

DOI QR Code

Inhibition of the DevSR Two-Component System by Overexpression of Mycobacterium tuberculosis PknB in Mycobacterium smegmatis

  • Bae, Hyun-Jung (Department of Microbiology, Pusan National University) ;
  • Lee, Ha-Na (Department of Microbiology, Pusan National University) ;
  • Baek, Mi-Na (Department of Microbiology, Pusan National University) ;
  • Park, Eun-Jin (Department of Microbiology, Pusan National University) ;
  • Eom, Chi-Yong (Korea Basic Science Institute) ;
  • Ko, In-Jeong (Korea Science Academy of KAIST) ;
  • Kang, Ho-Young (Department of Microbiology, Pusan National University) ;
  • Oh, Jeong-Il (Department of Microbiology, Pusan National University)
  • Received : 2017.05.11
  • Accepted : 2017.07.24
  • Published : 2017.09.30

Abstract

The DevSR (DosSR) two-component system, which is a major regulatory system involved in oxygen sensing in mycobacteria, plays an important role in hypoxic induction of many genes in mycobacteria. We demonstrated that overexpression of the kinase domain of Mycobacterium tuberculosis (Mtb) PknB inhibited transcriptional activity of the DevR response regulator in Mycobacterium smegmatis and that this inhibitory effect was exerted through phosphorylation of DevR on Thr180 within its DNA-binding domain. Moreover, the purified kinase domain of Mtb PknB significantly phosphorylated RegX3, NarL, KdpE, TrcR, DosR, and MtrA response regulators of Mtb that contain the Thr residues corresponding to Thr180 of DevR in their DNA-binding domains, implying that transcriptional activities of these response regulators might also be inhibited when the kinase domain of PknB is overexpressed.

Keywords

References

  1. Baer, C.E., Iavarone, A.T., Alber, T., and Sassetti, C.M. (2014). Biochemical and spatial coincidence in the provisional Ser/Thr protein kinase interaction network of Mycobacterium tuberculosis. J. Biol. Chem. 289, 20422-20433. https://doi.org/10.1074/jbc.M114.559054
  2. Chao, J.D., Papavinasasundaram, K.G., Zheng, X., Chavez-Steenbock, A., Wang, X., Lee, G.Q., and Av-Gay, Y. (2010). Convergence of Ser/Thr and two-component signaling to coordinate expression of the dormancy regulon in Mycobacterium tuberculosis. J. Biol. Chem. 285, 29239-29246. https://doi.org/10.1074/jbc.M110.132894
  3. Chawla, Y., Upadhyay, S., Khan, S., Nagarajan, S.N., Forti, F., and Nandicoori, V.K. (2014). Protein kinase B (PknB) of Mycobacterium tuberculosis is essential for growth of the pathogen in vitro as well as for survival within the host. J. Biol. Chem. 289, 13858-13875. https://doi.org/10.1074/jbc.M114.563536
  4. Cho, H.Y., Cho, H.J., Kim, Y.M., Oh, J.I., and Kang, B.S. (2009). Structural insight into the heme-based redox sensing by DosS from Mycobacterium tuberculosis. J. Biol. Chem. 284, 13057-13067. https://doi.org/10.1074/jbc.M808905200
  5. Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S.V., Eiglmeier, K., Gas, S., Barry, C.E., 3rd, et al. (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537-544. https://doi.org/10.1038/31159
  6. Fernandez, P., Saint-Joanis, B., Barilone, N., Jackson, M., Gicquel, B., Cole, S.T., and Alzari, P.M. (2006). The Ser/Thr protein kinase PknB is essential for sustaining mycobacterial growth. J. Bacteriol. 188, 7778-7784. https://doi.org/10.1128/JB.00963-06
  7. Fol, M., Chauhan, A., Nair, N.K., Maloney, E., Moomey, M., Jagannath, C., Madiraju, M.V., and Rajagopalan, M. (2006). Modulation of Mycobacterium tuberculosis proliferation by MtrA, an essential two-component response regulator. Mol. Microbiol. 60, 643-657. https://doi.org/10.1111/j.1365-2958.2006.05137.x
  8. Fontan, P., Walters, S., and Smith, I. (2004). Cellular signaling pathways and transcriptional regulation in Mycobacterium tuberculosis: stress control and virulence. Curr. Sci. 86, 122-134.
  9. Fridman, M., Williams, G.D., Muzamal, U., Hunter, H., Siu, K.W., and Golemi-Kotra, D. (2013). Two unique phosphorylation-driven signaling pathways crosstalk in Staphylococcus aureus to modulate the cellwall charge: Stk1/Stp1 meets GraSR. Biochemistry 52, 7975-7986. https://doi.org/10.1021/bi401177n
  10. Glover, R.T., Kriakov, J., Garforth, S.J., Baughn, A.D., and Jacobs, W.R., Jr. (2007). The two-component regulatory system senX3-regX3 regulates phosphate-dependent gene expression in Mycobacterium smegmatis. J. Bacteriol. 189, 5495-5503. https://doi.org/10.1128/JB.00190-07
  11. Horstmann, N., Saldana, M., Sahasrabhojane, P., Yao, H., Su, X., Thompson, E., Koller, A., and Shelburne, S.A., 3rd (2014). Dual-site phosphorylation of the control of virulence regulator impacts group a streptococcal global gene expression and pathogenesis. PLoS Pathog. 10, e1004088. https://doi.org/10.1371/journal.ppat.1004088
  12. James, J.N., Hasan, Z.U., Ioerger, T.R., Brown, A.C., Personne, Y., Carroll, P., Ikeh, M., Tilston-Lunel, N.L., Palavecino, C., Sacchettini, J.C., et al. (2012). Deletion of SenX3-RegX3, a key two-component regulatory system of Mycobacterium smegmatis, results in growth defects under phosphate-limiting conditions. Microbiology 158, 2724-2731. https://doi.org/10.1099/mic.0.060319-0
  13. Jeong, J.A., Baek, E.Y., Kim, S.W., Choi, J.S., and Oh, J.I. (2013). Regulation of the ald gene encoding alanine dehydrogenase by AldR in Mycobacterium smegmatis. J. Bacteriol. 195, 3610-3620. https://doi.org/10.1128/JB.00482-13
  14. Kang, C.M., Abbott, D.W., Park, S.T., Dascher, C.C., Cantley, L.C., and Husson, R.N. (2005). The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Genes Dev. 19, 1692-1704. https://doi.org/10.1101/gad.1311105
  15. Kendall, S.L., Movahedzadeh, F., Rison, S.C., Wernisch, L., Parish, T., Duncan, K., Betts, J.C., and Stoker, N.G. (2004). The Mycobacterium tuberculosis dosRS two-component system is induced by multiple stresses. Tuberculosis (Edinb) 84, 247-255. https://doi.org/10.1016/j.tube.2003.12.007
  16. Kim, M.J., Park, K.J., Ko, I.J., Kim, Y.M., and Oh, J.I. (2010). Different roles of DosS and DosT in the hypoxic adaptation of Mycobacteria. J. Bacteriol. 192, 4868-4875. https://doi.org/10.1128/JB.00550-10
  17. Kumar, A., Toledo, J.C., Patel, R.P., Lancaster, J.R., Jr., and Steyn, A.J. (2007). Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor. Proc. Natl. Acad. Sci. U S A 104, 11568-11573. https://doi.org/10.1073/pnas.0705054104
  18. Laub, M.T., and Goulian, M. (2007). Specificity in two-component signal transduction pathways. Annu. Rev. Genet. 41, 121-145. https://doi.org/10.1146/annurev.genet.41.042007.170548
  19. Lee, J.M., Cho, H.Y., Cho, H.J., Ko, I.J., Park, S.W., Baik, H.S., Oh, J.H., Eom, C.Y., Kim, Y.M., Kang, B.S., et al. (2008). $O_2$- and NO-sensing mechanism through the DevSR two-component system in Mycobacterium smegmatis. J. Bacteriol. 190, 6795-6804. https://doi.org/10.1128/JB.00401-08
  20. Lee, H.N., Jung, K.E., Ko, I.J., Baik, H.S., and Oh, J.I. (2012). Proteinprotein interactions between histidine kinases and response regulators of Mycobacterium tuberculosis H37Rv. J. Microbiol. 50, 270-277. https://doi.org/10.1007/s12275-012-2050-4
  21. Lee, H.N., Lee, N.O., Han, S.J., Ko, I.J., and Oh, J.I. (2014). Regulation of the ahpC gene encoding alkyl hydroperoxide reductase in Mycobacterium smegmatis. PLoS One 9, e111680. https://doi.org/10.1371/journal.pone.0111680
  22. Leonard, C.J., Aravind, L., and Koonin, E.V. (1998). Novel families of putative protein kinases in bacteria and archaea: evolution of the "eukaryotic" protein kinase superfamily. Genome Res. 8, 1038-1047. https://doi.org/10.1101/gr.8.10.1038
  23. Lin, W.J., Walthers, D., Connelly, J.E., Burnside, K., Jewell, K.A., Kenney, L.J., and Rajagopal, L. (2009). Threonine phosphorylation prevents promoter DNA binding of the Group B Streptococcus response regulator CovR. Mol. Microbiol. 71, 1477-1495. https://doi.org/10.1111/j.1365-2958.2009.06616.x
  24. Malhotra, V., Okon, B.P., and Clark-Curtiss, J.E. (2012). Mycobacterium tuberculosis protein kinase K enables growth adaptation through translation control. J. Bacteriol. 194, 4184-4196. https://doi.org/10.1128/JB.00585-12
  25. Mayuri, Bagchi, G., Das, T.K., and Tyagi, J.S. (2002). Molecular analysis of the dormancy response in Mycobacterium smegmatis: expression analysis of genes encoding the DevR-DevS twocomponent system, Rv3134c and chaperone ${\alpha}$-crystallin homologues. FEMS Microbiol. Lett. 211, 231-237.
  26. Menon, S. and Wang, S. (2011). Structure of the response regulator PhoP from Mycobacterium tuberculosis reveals a dimer through the receiver domain. Biochemistry 50, 5948-5957. https://doi.org/10.1021/bi2005575
  27. Mir, M., Asong, J., Li, X., Cardot, J., Boons, G.J., and Husson, R.N. (2011). The extracytoplasmic domain of the Mycobacterium tuberculosis Ser/Thr kinase PknB binds specific muropeptides and is required for PknB localization. PLoS Pathog. 7, e1002182. https://doi.org/10.1371/journal.ppat.1002182
  28. Mouncey, N.J. and Kaplan, S. (1998). Redox-dependent gene regulation in Rhodobacter sphaeroides $2.4.1^T$: effects on dimethyl sulfoxide reductase (dor). gene expression. J. Bacteriol. 180, 5612-5618.
  29. Narayan, A., Sachdeva, P., Sharma, K., Saini, A.K., Tyagi, A.K., and Singh, Y. (2007). Serine threonine protein kinases of mycobacterial genus: phylogeny to function. Physiol. Genomics 29, 66-75. https://doi.org/10.1152/physiolgenomics.00221.2006
  30. Oh, J.I., and Kaplan, S. (1999). The cbb3 terminal oxidase of Rhodobacter sphaeroides 2.4.1: structural and functional implications for the regulation of spectral complex formation. Biochemistry 38, 2688-2696. https://doi.org/10.1021/bi9825100
  31. Ortega, C., Liao, R., Anderson, L.N., Rustad, T., Ollodart, A.R., Wright, A.T., Sherman, D.R., and Grundner, C. (2014). Mycobacterium tuberculosis Ser/Thr protein kinase B mediates an oxygen-dependent replication switch. PLoS Biol. 12, e1001746. https://doi.org/10.1371/journal.pbio.1001746
  32. Park, H.D., Guinn, K.M., Harrell, M.I., Liao, R., Voskuil, M.I., Tompa, M., Schoolnik, G.K., and Sherman, D.R. (2003). Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol. Microbiol. 48, 833-843. https://doi.org/10.1046/j.1365-2958.2003.03474.x
  33. Pereira, S.F., Goss, L., and Dworkin, J. (2011). Eukaryote-like serine/threonine kinases and phosphatases in bacteria. Microbiol. Mol. Biol. Rev. 75, 192-212. https://doi.org/10.1128/MMBR.00042-10
  34. Plocinska, R., Purushotham, G., Sarva, K., Vadrevu, I.S., Pandeeti, E.V., Arora, N., Plocinski, P., Madiraju, M.V., and Rajagopalan, M. (2012). Septal localization of the Mycobacterium tuberculosis MtrB sensor kinase promotes MtrA regulon expression. J. Biol. Chem. 287, 23887-23899. https://doi.org/10.1074/jbc.M112.346544
  35. Podust, L.M., Ioanoviciu, A., and Ortiz de Montellano, P.R. (2008). 2.3 ${\AA}$ X-ray structure of the heme-bound GAF domain of sensory histidine kinase DosT of Mycobacterium tuberculosis. Biochemistry 47, 12523-12531. https://doi.org/10.1021/bi8012356
  36. Prisic, S., Dankwa, S., Schwartz, D., Chou, M.F., Locasale, J.W., Kang, C.M., Bemis, G., Church, G.M., Steen, H., and Husson, R.N. (2010). Extensive phosphorylation with overlapping specificity by Mycobacterium tuberculosis serine/threonine protein kinases. Proc. Natl. Acad. Sci. USA 107, 7521-7526. https://doi.org/10.1073/pnas.0913482107
  37. Roberts, D.M., Liao, R.P., Wisedchaisri, G., Hol, W.G., and Sherman, D.R. (2004). Two sensor kinases contribute to the hypoxic response of Mycobacterium tuberculosis. J. Biol. Chem. 279, 23082-23087. https://doi.org/10.1074/jbc.M401230200
  38. Russell, D.G. (2007). Who puts the tubercle in tuberculosis? Nat. Rev. Microbiol. 5, 39-47. https://doi.org/10.1038/nrmicro1538
  39. Rustad, T.R., Sherrid, A.M., Minch, K.J. and Sherman, D.R. (2009). Hypoxia: a window into Mycobacterium tuberculosis latency. Cell Microbiol. 11, 1151-1159. https://doi.org/10.1111/j.1462-5822.2009.01325.x
  40. Saini, D.K., Malhotra, V., and Tyagi, J.S. (2004). Cross talk between DevS sensor kinase homologue, Rv2027c, and DevR response regulator of Mycobacterium tuberculosis. FEBS Lett. 565, 75-80. https://doi.org/10.1016/j.febslet.2004.02.092
  41. Sambrook J, G.M. (2012). Molecular cloning: a laboratory manual, 4th ed. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY).
  42. Schnappinger, D., Ehrt, S., Voskuil, M.I., Liu, Y., Mangan, J.A., Monahan, I.M., Dolganov, G., Efron, B., Butcher, P.D., Nathan, C., et al. (2003). Transcriptional adaptation of Mycobacterium tuberculosis within Mmrophages: insights into the phagosomal environment. J. Exp. Med. 198, 693-704. https://doi.org/10.1084/jem.20030846
  43. Shah, I.M., Laaberki, M.H., Popham, D.L., and Dworkin, J. (2008). A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 135, 486-496. https://doi.org/10.1016/j.cell.2008.08.039
  44. Sherman, D.R., Voskuil, M., Schnappinger, D., Liao, R., Harrell, M.I., and Schoolnik, G.K. (2001). Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding ${\alpha}$-crystallin. Proc. Natl. Acad. Sci. U S A 98, 7534-7539. https://doi.org/10.1073/pnas.121172498
  45. Shi, L., Potts, M., and Kennelly, P.J. (1998). The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. FEMS Microbiol. Rev. 22, 229-253. https://doi.org/10.1111/j.1574-6976.1998.tb00369.x
  46. Snapper, S.B., Melton, R.E., Mustafa, S., Kieser, T., and Jacobs, W.R., Jr. (1990). Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol. Microbiol. 4, 1911-1919. https://doi.org/10.1111/j.1365-2958.1990.tb02040.x
  47. Sousa, E.H., Tuckerman, J.R., Gonzalez, G., and Gilles-Gonzalez, M.A. (2007). DosT and DevS are oxygen-switched kinases in Mycobacterium tuberculosis. Protein Sci. 16, 1708-1719. https://doi.org/10.1110/ps.072897707
  48. Stock, A.M., Robinson, V.L., and Goudreau, P.N. (2000). Twocomponent signal transduction. Annu. Rev. Biochem. 69, 183-215. https://doi.org/10.1146/annurev.biochem.69.1.183
  49. Voskuil, M.I., Schnappinger, D., Visconti, K.C., Harrell, M.I., Dolganov, G.M., Sherman, D.R., and Schoolnik, G.K. (2003). Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J. Exp. Med. 198, 705-713. https://doi.org/10.1084/jem.20030205
  50. Wayne, L.G. and Sohaskey, C.D. (2001). Nonreplicating persistence of Mycobacterium tuberculosis. Annu. Rev. Microbiol. 55, 139-163. https://doi.org/10.1146/annurev.micro.55.1.139
  51. Wehenkel, A., Bellinzoni, M., Grana, M., Duran, R., Villarino, A., Fernandez, P., Andre-Leroux, G., England, P., Takiff, H., Cervenansky, C., et al. (2008). Mycobacterial Ser/Thr protein kinases and phosphatases: physiological roles and therapeutic potential. Biochim. Biophys. Acta. 1784, 193-202. https://doi.org/10.1016/j.bbapap.2007.08.006
  52. West, A.H. and Stock, A.M. (2001). Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem. Sci. 26, 369-376. https://doi.org/10.1016/S0968-0004(01)01852-7
  53. Wisedchaisri, G., Wu, M., Sherman, D.R., and Hol, W.G. (2008). Crystal structures of the response regulator DosR from Mycobacterium tuberculosis suggest a helix rearrangement mechanism for phosphorylation activation. J. Mol. Biol. 378, 227-242. https://doi.org/10.1016/j.jmb.2008.02.029
  54. Yeats, C., Finn, R.D., and Bateman, A. (2002). The PASTA domain: $a{\beta}$-lactam-binding domain. Trends Biochem. Sci. 27, 438. https://doi.org/10.1016/S0968-0004(02)02164-3
  55. Young, T.A., Delagoutte, B., Endrizzi, J.A., Falick, A.M., and Alber, T. (2003). Structure of Mycobacterium tuberculosis PknB supports a universal activation mechanism for Ser/Thr protein kinases. Nat. Struct. Biol. 10, 168-174. https://doi.org/10.1038/nsb897
  56. Zahrt, T.C. and Deretic, V. (2000). An essential two-component signal transduction system in Mycobacterium tuberculosis. J. Bacteriol. 182, 3832-3838. https://doi.org/10.1128/JB.182.13.3832-3838.2000

Cited by

  1. Rv2629 Overexpression Delays Mycobacterium smegmatis and Mycobacteria tuberculosis Entry into Log-Phase and Increases Pathogenicity of Mycobacterium smegmatis in Mice vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.02231
  2. vol.293, pp.42, 2018, https://doi.org/10.1074/jbc.RA118.004331
  3. A Genome-Scale Co-Functional Network of Xanthomonas Genes Can Accurately Reconstruct Regulatory Circuits Controlled by Two-Component Signaling Systems vol.42, pp.2, 2017, https://doi.org/10.14348/molcells.2018.0403
  4. Dual control of RegX3 transcriptional activity by SenX3 and PknB vol.294, pp.28, 2017, https://doi.org/10.1074/jbc.ra119.008232
  5. Comparative transcriptomics reveals PrrAB-mediated control of metabolic, respiration, energy-generating, and dormancy pathways in Mycobacterium smegmatis vol.20, pp.1, 2017, https://doi.org/10.1186/s12864-019-6105-3