• 제목/요약/키워드: Protein Kinase A

검색결과 2,491건 처리시간 0.03초

Inhibitory Effects of Rice Bran Water Extract Fermented Lactobacillus plantarum due to cAMP-dependent Phosphorylation of VASP (Ser157) on human Platelet Aggregation

  • Kim, Hyun-Hong;Lee, Dong-Ha;Hong, Jeong Hwa;Ingkasupart, Pajaree;Nam, Gi Suk;Ok, Woo Jeong;Kim, Min Ji;Yu, Young-Bin;Kang, Hyo-Chan;Park, Hwa-Jin
    • 대한의생명과학회지
    • /
    • 제21권2호
    • /
    • pp.103-114
    • /
    • 2015
  • In this study, we investigated the effect of rice bran water extract fermented with Lactobacillus plantarum KCCM-12116 (RBLp) on ADP ($20{\mu}M$)-, collagen ($10{\mu}g/mL$)-, and thrombin (0.2 U/mL)-stimulated platelet aggregation. RBLp dose-dependently inhibited ADP-, collagen-, and thrombin-induced platelet aggregation, with $IC_{50}$ values of 501.1, 637.2, and > $2,000{\mu}g/mL$, respectively. The platelet aggregation induced by ADP plus RBLp ($750{\mu}g/mL$) was increased by the adenylate cyclase inhibitor, SQ22536, and the cAMP-dependent protein kinase (A-kinase) inhibitor, Rp-8-Br-cAMPS. Treatment with RBLp increased the phosphorylation of VASP ($Ser^{157}$), an A-kinase substrate, which was also inhibited by SQ22536 and Rp-8-Br-cAMPS. It is thought that the RBLp-induced increases in cAMP contributed to the phosphorylation of VASP ($Ser^{157}$), which in turn resulted in an inhibition of ADP-induced platelet aggregation, thereby indicating that RBLp has an antiplatelet effect via cAMP-dependent phosphorylation of VASP ($Ser^{157}$). Thus, RBLp may have therapeutic potential for the treatment (or prevention) of platelet aggregation-mediated diseases, such as thrombosis, myocardial infarction, atherosclerosis, and ischemic cerebrovascular disease.

Increased glucose metabolism and alpha-glucosidase inhibition in Cordyceps militaris water extract-treated HepG2 cells

  • Kim, Dae Jung;Kang, Yun Hwan;Kim, Kyoung Kon;Kim, Tae Woo;Park, Jae Bong;Choe, Myeon
    • Nutrition Research and Practice
    • /
    • 제11권3호
    • /
    • pp.180-189
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Recent living condition improvements, changes in dietary habits, and reductions in physical activity are contributing to an increase in metabolic syndrome symptoms including diabetes and obesity. Through such societal developments, humankind is continuously exposed to metabolic diseases such as diabetes, and the number of the victims is increasing. This study investigated Cordyceps militaris water extract (CMW)-induced glucose uptake in HepG2 cells and the effect of CMW treatment on glucose metabolism. MATERIALS/METHODS: Colorimetric assay kits were used to determine the glucokinase (GK) and pyruvate dehydrogenase (PDH) activities, glucose uptake, and glycogen content. Either RT-PCR or western blot analysis was performed for quantitation of glucose transporter 2 (GLUT2), hepatocyte nuclear factor 1 alpha ($HNF-1{\alpha}$), phosphatidylinositol 3-kinase (PI3k), protein kinase B (Akt), phosphorylated AMP-activated protein kinase (pAMPK), phosphoenolpyruvate carboxykinase, GK, PDH, and glycogen synthase kinase 3 beta ($GSK-3{\beta}$) expression levels. The ${\alpha}-glucosidase$ inhibitory activities of acarbose and CMW were evaluated by absorbance measurement. RESULTS: CMW induced glucose uptake in HepG2 cells by increasing GLUT2 through $HNF-1{\alpha}$ expression stimulation. Glucose in the cells increased the CMW-induced phosphorylation of AMPK. In turn, glycolysis was stimulated, and glyconeogenesis was inhibited. Furthermore, by studying the mechanism of action of PI3k, Akt, and $GSK-3{\beta}$, and measuring glycogen content, the study confirmed that the glucose was stored in the liver as glycogen. Finally, CMW resulted in a higher level of ${\alpha}-glucosidase$ inhibitory activity than that from acarbose. CONCLUSION: CMW induced the uptake of glucose into HepG2 cells, as well, it induced metabolism of the absorbed glucose. It is concluded that CMW is a candidate or potential use in diabetes prevention and treatment.

Amoebic PI3K and PKC Is Required for Jurkat T Cell Death Induced by Entamoeba histolytica

  • Lee, Young Ah;Kim, Kyeong Ah;Min, Arim;Shin, Myeong Heon
    • Parasites, Hosts and Diseases
    • /
    • 제52권4호
    • /
    • pp.355-365
    • /
    • 2014
  • The enteric protozoan parasite Entamoeba histolytica is the causative agent of human amebiasis. During infection, adherence of E. histolytica through Gal/GalNAc lectin on the surface of the amoeba can induce caspase-3-dependent or -independent host cell death. Phosphorylinositol 3-kinase (PI3K) and protein kinase C (PKC) in E. histolytica play an important function in the adhesion, killing, or phagocytosis of target cells. In this study, we examined the role of amoebic PI3K and PKC in amoeba-induced apoptotic cell death in Jurkat T cells. When Jurkat T cells were incubated with E. histolytica trophozoites, phosphatidylserine (PS) externalization and DNA fragmentation in Jurkat cells were markedly increased compared to those of cells incubated with medium alone. However, when amoebae were pretreated with a PI3K inhibitor, wortmannin before being incubated with E. histolytica, E. histolytica-induced PS externalization and DNA fragmentation in Jurkat cells were significantly reduced compared to results for amoebae pretreated with DMSO. In addition, pretreatment of amoebae with a PKC inhibitor, staurosporine strongly inhibited Jurkat T cell death. However, E. histolytica-induced cleavage of caspase-3, -6, and -7 were not inhibited by pretreatment of amoebae with wortmannin or staurosporin. In addition, we found that amoebic PI3K and PKC have an important role on amoeba adhesion to host compartment. These results suggest that amebic PI3K and PKC activation may play an important role in caspase-independent cell death in Entamoeba-induced apoptosis.

Lisophosphatidic Acid Inhibits Melanocyte Proliferation via Cell Cycle Arrest

  • Kim, Dong-Seok;Park, Seo-Hyoung;Kim, Sung-Eun;Kwon, Sun-Bang;Park, Eun-Sang;Youn, Sang-Woong;Park, Kyoung-Chan
    • Archives of Pharmacal Research
    • /
    • 제26권12호
    • /
    • pp.1055-1060
    • /
    • 2003
  • Lysophosphatidic acid (LPA) is a well-known mitogen in various cell types. However, we found that LPA inhibits melanocyte proliferation. Thus, we further investigated the possible signaling pathways involved in melanocyte growth inhibition. We first examined the regulation of the three major subfamilies of mitogen-activated protein (MAP) kinases and of the Akt pathway by LPA. The activations of extracellular signal-regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK) were observed in concert with the inhibition of melanocyte proliferation by LPA, whereas p38 MAP kinase and Akt were not influenced by LPA. However, the specific inhibition of the ERK or JNK pathways by PD98059 or D-JNKI1, respectively, did not restore the antiproliferative effect. We next examined changes in the expression of cell cycle related proteins. LPA decreased cyclin $D_1 and cyclin D_2$ levels but increased $p21^{WAF1/CIP1}$ (p21) and $p27^{KIP1}$ (p27) levels, which are known inhibitors of cyclin-dependent kinase. Flow cytometric analysis showed the inhibition of DNA synthesis by a reduction in the S phase and an increase in the $G_0/G_1$ phase of the cell cycle. Our results suggest that LPA induces cell cycle arrest by regulating the expressions of cell cycle related proteins.

Transcriptional Regulatory Role of NELL2 in Preproenkephalin Gene Expression

  • Ha, Chang Man;Kim, Dong Hee;Lee, Tae Hwan;Kim, Han Rae;Choi, Jungil;Kim, Yoonju;Kang, Dasol;Park, Jeong Woo;Ojeda, Sergio R.;Jeong, Jin Kwon;Lee, Byung Ju
    • Molecules and Cells
    • /
    • 제45권8호
    • /
    • pp.537-549
    • /
    • 2022
  • Preproenkephalin (PPE) is a precursor molecule for multiple endogenous opioid peptides Leu-enkephalin (ENK) and Met-ENK, which are involved in a wide variety of modulatory functions in the nervous system. Despite the functional importance of ENK in the brain, the effect of brain-derived factor(s) on PPE expression is unknown. We report the dual effect of neural epidermal growth factor (EGF)-like-like 2 (NELL2) on PPE gene expression. In cultured NIH3T3 cells, transfection of NELL2 expression vectors induced an inhibition of PPE transcription intracellularly, in parallel with downregulation of protein kinase C signaling pathways and extracellular signal-regulated kinase. Interestingly, these phenomena were reversed when synthetic NELL2 was administered extracellularly. The in vivo disruption of NELL2 synthesis resulted in an increase in PPE mRNA level in the rat brain, suggesting that the inhibitory action of intracellular NELL2 predominates the activation effect of extracellular NELL2 on PPE gene expression in the brain. Biochemical and molecular studies with mutant NELL2 structures further demonstrated the critical role of EGF-like repeat domains in NELL2 for regulation of PPE transcription. These are the first results to reveal the spatio-specific role of NELL2 in the homeostatic regulation of PPE gene expression.

Inhibitory Action of 1,3,5-Trihydroxybenzene on UVB-Induced NADPH Oxidase 4 through AMPK and JNK Signaling Pathways

  • Chaemoon Lim;Mei Jing Piao;Kyoung Ah Kang;Pincha Devage Sameera Madushan Fernando;Herath Mudiyanselage Udari Lakmini Herath;Dae Whan Kim;Joo Mi Yi;Yung Hyun Choi;Jin Won Hyun
    • Biomolecules & Therapeutics
    • /
    • 제32권4호
    • /
    • pp.499-507
    • /
    • 2024
  • Specific sensitivity of the skin to ultraviolet B (UVB) rays is one of the mechanisms responsible for widespread skin damage. This study tested whether 1,3,5-trihydroxybenzene (THB), a compound abundant in marine products, might inhibit UVB radiationinduced NADPH oxidase 4 (NOX4) in both human HaCaT keratinocytes and mouse dorsal skin and explore its cytoprotective mechanism. The mechanism of action was determined using western blotting, immunocytochemistry, NADP+/NADPH assay, reactive oxygen species (ROS) detection, and cell viability assay. THB attenuated UVB-induced NOX4 expression both in vitro and in vivo, and suppressed UVB-induced ROS generation via NADP+ production, resulting in increased cell viability with decreased apoptosis. THB also reduced the expression of UVB-induced phosphorylated AMP-activated protein kinase (AMPK) and phosphorylated c-Jun N-terminal kinase (JNK). THB suppressed UVB-induced NOX4 expression and ROS generation by inhibiting AMPK and JNK signaling pathways, thereby inhibiting cellular damage. These results showed that THB could be developed as a UV protectant.

Phloroglucinol Enhances Anagen Signaling and Alleviates H2O2-Induced Oxidative Stress in Human Dermal Papilla Cells

  • Seokmuk Park;Ye Jin Lim;Hee Su Kim;Hee-Jae Shin;Ji-Seon Kim;Jae Nam Lee;Jae Ho Lee;Seunghee Bae
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권4호
    • /
    • pp.812-827
    • /
    • 2024
  • Phloroglucinol (PG) is one of the abundant isomeric benzenetriols in brown algae. Due to its polyphenolic structure, PG exhibits various biological activities. However, the impact of PG on anagen signaling and oxidative stress in human dermal papilla cells (HDPCs) is unknown. In this study, we investigated the therapeutic potential of PG for improving hair loss. A non-cytotoxic concentration of PG increased anagen-inductive genes and transcriptional activities of β-Catenin. Since several anagen-inductive genes are regulated by β-Catenin, further experiments were performed to elucidate the molecular mechanism by which PG upregulates anagen signaling. Various biochemical analyses revealed that PG upregulated β-Catenin signaling without affecting the expression of Wnt. In particular, PG elevated the phosphorylation of protein kinase B (AKT), leading to an increase in the inhibitory phosphorylation of glycogen synthase kinase 3 beta (GSK3β) at serine 9. Treatment with the selective phosphoinositide 3-kinase/AKT inhibitor, LY294002, restored the increased AKT/GSK3β/β-Catenin signaling and anagen-inductive proteins induced by PG. Moreover, conditioned medium from PG-treated HDPCs promoted the proliferation and migration of human epidermal keratinocytes via the AKT signaling pathway. Subsequently, we assessed the antioxidant activities of PG. PG ameliorated the elevated oxidative stress markers and improved the decreased anagen signaling in hydrogen peroxide (H2O2)-induced HDPCs. The senescence-associated β-galactosidase staining assay also demonstrated that the antioxidant abilities of PG effectively mitigated H2O2-induced senescence. Overall, these results indicate that PG potentially enhances anagen signaling and improves oxidative stress-induced cellular damage in HDPCs. Therefore, PG can be employed as a novel therapeutic component to ameliorate hair loss symptoms.

N형 칼슘통로 비활성화와 연계된 세포 신호전달 체계로서의 인산화과정 (Phosphorylation as a Signal Transduction Pathway Related with N-channel Inactivation in Rat Sympathetic Neurons)

  • 임원일;구용숙
    • 한국의학물리학회지:의학물리
    • /
    • 제15권4호
    • /
    • pp.220-227
    • /
    • 2004
  • N형 칼슘통로의 비활성화기전에 관하여는 아직까지도 막전압의존성 기전과 칼슘의존성 기전간에 논란이 계속되고 있다. 2003년에 의학물리에 발표한 논문1)에서 본 연구자는 N형 칼슘통로의 비활성화 기전은 2가지 성분 -빠른 성분과 느린 성분을 가지고 있고 빠른 성분은 칼슘의존적이 아니며 오직 느린 성분만이 칼슘의존적일 가능성을 제시하였다. 본 논문에서는 막전압의존성 기전이 옳건 칼슘의존성 기전이 옳건 간에 세포 신호전달 체계로서 비활성화와 연계된 기전이 필요하므로 이러한 맥락에서 인산화 기전을 연구하였다. 흰쥐 경동맥 결절뉴론을 단일 세포로 얻은 후 whole cell patch clamp technique를 사용하여 N형 칼슘전류를 기록하고 대조 세포내액을 사용하였을 때와 phosphatase inhibitor인 okadaic acid를 포함한 세포내액을 사용하였을 때의 차이를 비교하였다. Okadaic acid에 의하여 비활성화정도가 증가되었고 이러한 okadaic acid 효과는 주로 N형 통로를 통하여 영향을 미침을 N형 칼슘통로 억제제인 $\omega$-conotoxin GVIA를 사용함으로써 확인하였다. Okadaic acid에 의한 비활성화 증가 효과는 protein kinase를 비특이적으로 억제하는 staurosporine에 의하여 억제되었고 또한 calmodulin dependent protein kinase의 특이적 억제제인 lavendustin C에 의하여 억제되었으므로 인산화과정이 N형 칼슘통로 비활성화와 관련되어 있고 특히 calmodulin을 통한 인산화과정이 주로 관여함을 확인하였다. 본 연구자가 발표한 선행논문1)에 의해 외부의 2가 양이온에 의해 빠른 비활성화가 진행되며, 본 논문에 의하여 인산화과정에 의해 빠른 비활성화가 촉진된다는 사실이 확인되었다. 그러나 본 연구결과만으로는 인산화과정이 비활성화 자체라고는 볼 수 없으며 단지 인산화과정에 의해 비활성화가 가속되었다고 해석할 수 밖에 없다. 인산화과정이 비활성화자 체인지 여부는 2가 양이온이 칼슘통로에 작용하는 결합부위에 관한 연구 및 인산화 부위가 칼슘통로인지 아니면 다른 조절 부위인지 여부를 확인할 수 있는 연구가 진행되어야 확실히 알 수 있을 것이다.

  • PDF

TNF 신호전달에서 RIPK와 MLKL의 기능적 생리적 특성 (Functional and Physiological Characteristic of RIPK and MLKL in TNF Signaling)

  • 박영훈;정미숙;장세복
    • 생명과학회지
    • /
    • 제26권7호
    • /
    • pp.868-874
    • /
    • 2016
  • 수용체 상호작용 단백질 인산화 효소 RIPK1 (Receptor-interacting protein kinases 1)과 RIPK3은 고도로 보존된 인산화 효소 부위를 통하여 세린이나 트레오닌의 하이드록실기를 인산화하는 세린 또는 트레오닌-단백질 인산화 효소 군에 속한다. RIPK군은 염증이나 선천성 면역뿐 만 아니라 세포사멸이나 괴사와 같은 프로그램화된 세포사 멸을 중재하는데 중요한 역할을 담당한다. RIPK1과 다른 TNFR1 관련 단백질들의 상호작용은 TNF 수용체 1(TNFR1)에 사이토카인이 결합할 때 생존 촉진 전사인자 NF-κB의 활성을 조절하는 신호전달복합체 I을 조립하는 것으로 알려져 왔다. 뿐만 아니라, RIPK1과 RIPK3은 프로그램화된 세포괴사를 중재하는 RIP 동형 상호작용 모티브(RHIM)를 통하여 상호작용하고, 이러한 괴사는 세포사멸의 유형과는 다른 형태학적 특징을 가진 돌발적이고 제어되지 않는 세포사멸 유형으로 오랫동안 알려져 왔다. RIPK1과 RIPK3에 존재하는 RHIM의 고도로 보존된 서열들이 이들의 상호작용을 조절하며 이들은 necrosome이라 불리는 세포질 내 아밀로이드 복합체의 조립을 유도 한다. 또한 necrosome은 최근에 하위 신호전달을 조절하는 RIPK3의 기질로 확인된 혼합형 인산화 효소 도메인-유사 단백질(MLKL)을 포함한다. 본 리뷰는 TNF 신호전달에서 RIPK와 MLKL의 기능적, 생리적 특징들에 관한 개요를 제공한다.

Protein Kinase C Receptor Binding Assay for the Detection of Chemopreventive Agents from Natural Products

  • An, Geon-Ho;Suh, Young-Bae;Son, Kun-Ho;Chang, Il-Moo;Mar, Woong-Chon
    • Natural Product Sciences
    • /
    • 제3권1호
    • /
    • pp.29-37
    • /
    • 1997
  • Protein Kinase C (PKC) is generally believed to play a central role in signal transduction, cellular growth control, gene expression, and tumor promotion. And it has been suggested that inhibitors of PKC might play important roles for the prevention and treatment of cancer. In order to investigate the possible inhibitors of PKC from natural products, PKC receptor binding assay was performed using bovine brain particulate as a source of PKC and the amount of $[^3H]Phorbol$ 12,13-dibutyrate (PDBu) bound to PKC was measured in the presence of test materials. Total methanol extracts from 100 kinds of natural products were partitioned into 3 fractions (n-hexane, ethyl acetate and aqueous layer) and their binding ability to the regulatory domain of PKC was evaluated. The ethyl acetate fractions of Morus alba $(roots,\;IC_{50}:\;156.6\;{\mu}g/ml)$, Rehmannia glutinosa $(roots,\;IC_{50}:\;134.3\;{\mu}g/ml)$, Lysimachia foenum-graecum $(roots,\;IC_{50}:\;167.8\;{\mu}g/ml)$, Polygonum cuspidata $(roots,\;IC_{50}:\;157.3\;{\mu}g/ml)$, Cnidium officinale $(aerial\;parts,\;IC_{50}:\;145.2\;{\mu}g/ml)$, and the hexane $(IC_{50}:\;179.3\;{\mu}g/ml)$ and the EtOAc fraction of Symplocarpus nipponicus $(roots,\;IC_{50}:\;155.9\;{\mu}g/ml)$ showed inhibitory activity of $[^3H]PDBu$ binding to PKC.

  • PDF