• 제목/요약/키워드: Protein Kinase A

검색결과 2,491건 처리시간 0.033초

G Protein-Coupled Receptor Signaling in Gastrointestinal Smooth Muscle

  • Sohn, Uy-Dong;Kim, Dong-Seok;Murthy, Karnam S.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권4호
    • /
    • pp.287-297
    • /
    • 2001
  • Contraction of smooth muscle is initiated by an increase in cytosolic $Ca^{2+}$ leading to activation of $Ca^{2+}$/ calmodulin-dependnet myosin light chain (MLC) kinase and phosphorylation of MLC. The types of contraction and signaling mechanisms mediating contraction differ depending on the region. The involvement of these different mechanisms varies depending on the source of $Ca^{2+}$ and the kinetic of $Ca^{2+}$ mobilization. $Ca^{2+}$ mobilizing agonists stimulate different phospholipases $(PLC-{\beta},\;PLD\;and\;PLA_2)$ to generate one or more $Ca^{2+}$ mobilizing messengers $(IP_3\;and\;AA),$ and diacylglycerol (DAG), an activator of protein kinase C (PKC). The relative contributions of $PLC-{\beta},\;PLA_2$ and PLD to generate second messengers vary greatly between cells and types of contraction. In smooth muscle cell derived form the circular muscle layer of the intestine, preferential hydrolysis of $PIP_2$ and generation of $IP_3$ and $IP_3-dependent\;Ca^{2+}$ release initiate the contraction. In smooth muscle cells derived from longitudinal muscle layer of the intestine, preferential hydrolysis of PC by PLA2, generation of AA and AA-mediated $Ca^{2+}$ influx, cADP ribose formation and $Ca^{2+}-induced\;Ca^{2+}$ release initiate the contraction. Sustained contraction, however, in both cell types is mediated by $Ca^{2+}-independent$ mechanism involving activation of $PKC-{\varepsilon}$ by DAG derived form PLD. A functional linkage between $G_{13},$ RhoA, ROCK, $PKC-{\varepsilon},$ CPI-17 and MLC phosphorylation in sustained contraction has been implicated. Contraction of normal esophageal circular muscle (ESO) in response to acetylcholine (ACh) is linked to $M_2$ muscarinic receptors activating at least three intracellular phospholipases, i.e. phosphatidylcholine-specific phospholipase C (PC-PLC), phospholipase D (PLD) and the high molecular weight (85 kDa) cytosolic phospholipase $A_2\;(cPLA_2)$ to induce phosphatidylcholine (PC) metabolism, production of diacylglycerol (DAG) and arachidonic acid (AA), resulting in activation of a protein kinase C (PKC)-dependent pathway. In contrast, lower esophageal sphincter (LES) contraction induced by maximally effective doses of ACh is mediated by muscarinic $M_3$ receptors, linked to pertussis toxin-insensitive GTP-binding proteins of the $G_{q/11}$ type. They activate phospholipase C, which hydrolyzes phosphatidylinositol bisphosphate $(PIP_2),$ producing inositol 1, 4, 5-trisphosphate $(IP_3)$ and DAG. $IP_3$ causes release of intracellular $Ca^{2+}$ and formation of a $Ca^{2+}$-calmodulin complex, resulting in activation of myosin light chain kinase and contraction through a calmodulin-dependent pathway.

  • PDF

A CoMFA Study of Glycogen Synthase Kinase 3 Inhibitors

  • Balupuri, Anand;Balasubramanian, Pavithra K.;Cho, Seung Joo
    • 통합자연과학논문집
    • /
    • 제8권1호
    • /
    • pp.40-47
    • /
    • 2015
  • Glycogen synthase kinase 3 (GSK-3) is a serine/threonine protein kinase that has recently emerged as a promising target in drug discovery. It is involved in multiple cellular processes and associated with the pathogenesis of several diseases. A three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis was performed on a series of GSK-3 inhibitors to understand the structural basis for inhibitory activity. Comparative molecular field analysis (CoMFA) method was used to derive 3D-QSAR models. A reliable CoMFA model was developed using ligand-based alignment scheme. The model produced statistically acceptable results with a cross-validated correlation coefficient ($q^2$) of 0.594 and a non-cross-validated correlation coefficient ($r^2$) of 0.943. Robustness of the model was checked by bootstrapping and progressive scrambling analysis. This study could assist in the design of novel compounds with enhanced GSK-3 inhibitory activity.

HIV-1 Tat-mediated protein transduction of human brain creatine kinase into PC12 cells

  • Jeong, Min-Seop;Kim, Dae-Won;Lee, Min-Jung;Lee, Yeom-Pyo;Kim, So-Young;Lee, Sun-Hwa;Jang, Sang-Ho;Lee, Kil-Soo;Park, Jin-Seu;Kang, Tae-Cheon;Cho, Sung-Woo;Kwon, Oh-Shin;Eum, Won-Sik;Choi, Soo-Young
    • BMB Reports
    • /
    • 제41권7호
    • /
    • pp.537-541
    • /
    • 2008
  • Epilepsy is characterized by the presence of spontaneous episodes of abnormal neuronal discharges and its pathogenic mechanisms remain poorly understood. Recently, we found that the expression of creatine kinase (CK) was markedly decreased in an epilepsy animal model using proteomic analysis. A human CK gene was fused with a HIV-1 Tat peptide to generate an in-frame Tat-CK fusion protein. The purified Tat-CK fusion protein was efficiently transduced into PC12 cells in a time- and dose-dependent manner when added exogenously to culture media. Once inside the cells, the transduced Tat-CK fusion protein was stable for 48 h. Moreover, the Tat-CK fusion protein markedly increased endogenous CK activity levels within the cells. These results suggest that Tat-CK provides a strategy for the therapeutic delivery of proteins in various human diseases including the delivery of CK for potential epilepsy treatment.

STK899704 inhibits stemness of cancer stem cells and migration via the FAK-MEK-ERK pathway in HT29 cells

  • Jang, Hui-Ju;Bak, Yesol;Pham, Thu-Huyen;Kwon, Sae-Bom;Kim, Bo-Yeon;Hong, JinTae;Yoon, Do-Young
    • BMB Reports
    • /
    • 제51권11호
    • /
    • pp.596-601
    • /
    • 2018
  • Colon cancer is one of the most lethal and common malignancies worldwide. STK899704, a novel synthetic agent, has been reported to exhibit anticancer effects towards numerous cancer cells. However, the effect of STK899704 on the biological properties of colon cancer, including cancer cell migration and cancer stem cells (CSCs), remains unknown. Here, we examined the inhibitory effect of STK899704 on cell migration and CSC stemness. In the wound healing assay, STK899704 significantly inhibited the motility of colon cancer cells. Furthermore, STK899704 downregulated the mRNA expression levels of the cell migration mediator focal adhesion kinase (FAK). STK899704 also suppressed mitogen-activated protein kinase kinase and extracellular signal-regulated kinase, which are downstream signaling molecules of FAK. Additionally, STK899704 inhibited stemness gene expression and sphere formation in colon cancer stem cells. These results suggest that STK899704 can be used to treat human colon cancer.

Peroxiredoxin 6 Promotes Lung Cancer Cell Invasion by Inducing Urokinase-Type Plasminogen Activator via p38 Kinase, Phosphoinositide 3-Kinase, and Akt

  • Lee, Seung Bum;Ho, Jin-Nyoung;Yoon, Sung Hwan;Kang, Ga Young;Hwang, Sang-Gu;Um, Hong-Duck
    • Molecules and Cells
    • /
    • 제28권6호
    • /
    • pp.583-588
    • /
    • 2009
  • The peroxiredoxin family of peroxidase has six mammalian members (Prx 1-6). Considering their frequent up-regulation in cancer cells, Prxs may contribute to cancer cells' survival in face of oxidative stress. Here, we show that Prx 6 promotes the invasiveness of lung cancer cells, accompanied by an increase in the activity of phosphoinositide 3-kinase (PI3K), the phosphorylation of p38 kinase and Akt, and the protein levels of uPA. Functional studies reveal that these components support Prx 6-induced invasion in the sequence p38 kinase/PI3K, Akt, and uPA. The findings provide a new understanding of the action of Prx 6 in cancer.

PC12 세포주에서 Translationally Controlled Tumor Protein에 의한 Mitogen-activated Protein Kinases 활성 조절 (Regulation of Mitogen-activated Protein Kinases by Translatoinally Controlled Tumor Protein in PC12 Cells)

  • 김미연;김미영
    • 약학회지
    • /
    • 제54권5호
    • /
    • pp.323-327
    • /
    • 2010
  • Translationally controlled tumor protein (TCTP) activates basophils to release histamine and causes chronic inflammation. It was also reported that TCTP significantly reduced in brain of Alzheimer's Disease and Down Syndrome as compared to normal person, suggesting that TCTP might be involved in cognitive function. We wondered whether TCTP could act as a general inducer in neurotransmitters release in brain. We, therefore, investigated the role of TCTP in PC12 cell line which expressed neuronal properties. We found that TCTP could activate JNK, and the activity was inhibited by pretreatment of dicoumarol, a JNK inhibitor. However, TCTP could not activate ERK that has known to be involved in neurotransmitter release. These suggest TCTP did not participate in neurotransmitter release from PC12 cells, and TCTP might not be a general inducer in neurotransmitter release.

RAW 264.7 세포에서 Nrf2/MAPK 의 활성을 통한 HO-1 과발현에 의한 silymarin의 항산화 효과 (Enhanced Antioxidative Potential by Silymarin Treatment through the Inductionof Nrf2/MAPK Mediated HO-1 Signaling Pathway in RAW 264.7 Cells)

  • 윤현서;안현;박충무
    • 생명과학회지
    • /
    • 제33권10호
    • /
    • pp.776-782
    • /
    • 2023
  • Silymarin은 간 보호, 항산화, 항염, 항암 등 다양한 생리 활성을 나타내는 것으로 보고되었고, 본 연구에서는 산화 스트레스에 대한 항산화 잠재력과 그 기전을 세포 생존력 및 활성산소종 생성 분석과 Western blot 분석을 통해 RAW 264.7 세포에서 알아보고자 하였다. Silymarin은 세포 독성 없이 lipopolysaccharide(LPS)에 의해 자극된 세포 내 활성산소종을 농도 의존적으로 소거하였다. 그리고 항산화 효과를 보여주는 것으로 알려진 제2상 효소 중 하나인 heme oxygenase (HO)-1의 발현은 silymarin 처리에 의해 강하게 유도되었다. 또한 silymarin 처리는 항산화 효소의 전사인자인 nuclear factor-erythroid 2 p45-related factor (Nrf)-2의 발현을 유의미하게 유도하였고, 이는 HO-1 발현증가와 일치하였다. 세포내 산화와 환원 항상성 조절과 관련된 신호 전달물질인 mitogen activated protein kinase (MAPK)와 phosphoinositde 3-kinase (PI3K)의 인산화 정도 또한 Western blot으로 분석하였고, 그 결과 silymarin 은 p38 MAPK 인산화에 의해 HO-1 발현을 유도하는 것으로 나타났다. 그리고 tert-butyl hydroperoxide (t-BHP)를 이용하여 세포내 지질 과산화를 유도함으로써 silymarin에 의해 유도된 HO-1의 항산화 효과를 확인하였다. 그 결과 silymarin 처리에 의해 세포사멸이 유의적으로 억제되었고, p38의 선택적 저해제를 처리한 세포군에서는 t-BHP에 의해 유의적인 세포사멸이 발생하였다. 이 결과를 통해 silymarin은 Nrf-2/p38 MAPK 신호 전달 경로를 통해 HO-1의 발현을 유도하고, 이를 통해 항산화 효과를 높이는 것을 확인할 수 있었다.

녹차성분 EGCG의 CSK 단백질 조절을 통한 암예방 효과 (Cancer Prevention Effect of Epigallocatechin-3-gallate through Regulate in C-terminal Src Kinase (CSK) Signaling Pathway)

  • 김대용;최부영
    • 생약학회지
    • /
    • 제45권2호
    • /
    • pp.127-134
    • /
    • 2014
  • A great interest is emerging about green tea as a tool against human cancer proliferation or inflammation, as pointed out by recent reports describing the inhibitory action of epigallocatechin gallate (EGCG) on angiogenesis, urokinase, metalloproteinases, and induction of inducible nitric oxide synthase. We proposed that EGCG may regulate a multi target signaling having wider spectra of action than those actions of single enzymes. CSK (c-terminal Src kinase) protein is a non-receptor tyrosine kinase involved in the cross-talk and mediation of many signaling pathways that promote cell proliferation, adhesion, invasion, migration, and tumorigenesis. Based on the knowledge that CSK activation is important for cancer proliferation we hypothesized that CSK could be a target of EGCG. Here we showed that EGCG effectively suppressed the growth of CSK MEF cell when compare with CSK knockout MEF cell growth. These results indicate that EGCG could be used as a chemoprevention to modulate CSK signal pathway in inflammatory processes and tumor formation.

아그배나무(Malus sieboldii)의 IgE 매개성 알레르기 반응 억제 효과 및 기전 (Extract of Malus sieboldii Suppresses IgE-mediated Mast Cell Activation through Inhibition of Syk Kinase)

  • 조소영;김영미
    • 생약학회지
    • /
    • 제49권4호
    • /
    • pp.298-304
    • /
    • 2018
  • Malus sieboldii is a dicotyledonous plant that grows widely in Jeju Island and Ganghwa Island in Korea. Malus sieboldii has been known as a detoxifying and antioxidant plant, but study on allergic diseases is not known. In this study, we investigated the effect of Malus sieboldii extract (MSE) on the activation of mast cells, which is well known to be a critical causative cell to induce allergic diseases. As a result of our experiments, MSE inhibited the degranulation and inflammatory cytokine secretion from mast cells by antigen stimulation. As the mechanism of MSE in mast cells, it inhibited the activation of Syk kinase, a essential signaling protein activated by antigen, and further inhibited activation of $PLC{\gamma}$ and MAP kinase(P38, ERK1/2, and JNK). Furthermore, in vivo animal studies showed that MSE significantly inhibited IgE-mediated passive cutaneous anaphylaxis and passive systemic anaphylaxis in a dose-dependent manner. Taken together, the results of this study showed for the first time that MSE inhibited IgE-mediated allergic responses by suppressing Syk kinase in mast cells. Therefore, it could be considered that MSE is worth developing as an anti-allergic material.

Effects of PCB Congeners in Rodent Neuronal Cells in Culture

  • Kim, Sun-Young;Yang, Jae-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권1호
    • /
    • pp.9-15
    • /
    • 2005
  • We attempted to analyze the mechanism of polychlorinated biphenyl (PCB)-induced neurotoxicity and identify the target molecules in the neuronal cells for PCBs.Since the developing neuron is particularly sensitive to PCB-induced neurotoxicity, we isolated cerebellar granule cells derived from 7-day old Sprague Dawley (SD) rats and grew cells in culture for additional 7 days to mimic PND-14 conditions. Only non-coplanar PCBs at a high dose showed a significant increase of total protein kinase C (PKC) activity at phobol 12,13-dibutyrate ([$^3M$]PDBu) binding assay, indicating that non-coplanar PCBs are more neuroactive than coplanar PCBs in neuronal cells. PKC isozymes were immunoblotted with the selected monoclonal antibodies. PKC-${\alpha}$, ${\delta}$, and ε were activated with non-coplanar PCB exposure. Receptor for activated C kinase-1 (RACK-1), anchoring protein for activated PKC, was more induced with exposure to coplanar PCBs than non-coplanar PCBs. Reverse transcription PCR (RT-PCR) analysis showed induction of neurogranin (RC-3) and growth associated protein-43 (GAP-43) mRNA with non-coplanar PCBs. The results indicate that these factors may be useful biomarkers for differentiating non-coplanar PCBs from coplanar PCBs. The present study demonstrated that non-coplanar PCBs are more neuroactive congeners than coplanar PCBs.