• Title/Summary/Keyword: Protein Kinase

Search Result 2,853, Processing Time 0.031 seconds

Cold Hardiness Change in Solenopsis japonica (Hymenoptera: Formicidae) by Rapid Cold Hardening (급속내한성 유기에 의한 일본열마디개미(Solenopsis japonica)의 내한성 변화)

  • Park, Youngjin;Vatanparast, Mohammad;Lee, Jieun
    • Korean journal of applied entomology
    • /
    • v.60 no.2
    • /
    • pp.193-199
    • /
    • 2021
  • Solenopsis japonica, which is belonging to Formicidae in Hymenoptera, is a native ant species in Korea. However, it had not been studied for cold hardiness of S. japonica to understand on its overwintering mechanisms in field so far. Cold tolerance on developmental stages was measured at different cold temperature with various exposure times. Workers showed more survival at 5℃ and 10℃ compared with other stages and elevated cold tolerance when workers were exposed at 15℃ for more than 12h incubation as a rapid cold hardening (RCH) condition. RCH treatment not only increased survival of workers at cold temperatures, but also decreased supercooling point (SCP) and freezing point (FP). RCH group increased the survival rate by 44% at 10℃ compared with Non-RCH group. SCP and FP were depressed from -10.0 to -14.2℃ and from -11.3 to -15.3℃, respectively, after RCH treatment. Cold temperature increased expression level of cold- and stress-related genes such as glycerol kinase and heat shock protein. These results indicate unacclimated cold tolerance of S. japonica and its acclimation to low temperature by RCH.

Effect of Nardotidis seu Sulculii Concha water extract (NSCE) on liver damage and depression in restraint-induced stress model (구속 스트레스 모델에서 석결명의 간손상 및 우울증 관련 인자에 미치는 영향)

  • Kim, Min-Jung;Oh, Tae-woo;Do, Hyun-joo;Kim, Kwang-yeon;Yang, Joo-hye;Son, Jae-Dong;Yang, Ye-jin;You, Young-Zoo;Kim, Woo-Hyun;Kang, Seung-Ho;Lee, Dong-ho;Ki, Seung-hee;Kim, Young-Woo;Park, Kwang-Il
    • Herbal Formula Science
    • /
    • v.30 no.2
    • /
    • pp.85-93
    • /
    • 2022
  • Objectives : This study investigated anti-inflammatory effects of Nardotidis seu Sulculii Concha water extract (NSCE) against restraint-induced stress. Methods : In vivo, NSCE was orally administered to male white mice at concentrations of 250 mg/kg and 500 mg/kg for 3 days, and then restraint-induced stress was induced for 6 hours. The level of liver damage was measured by serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH). The stress-related hormones such as cortisol and corticosterone were measured by ELISA assay. Also, western blot analysis was performed to detect expression of mitogen-activated protein kinase (MAPK) and cyclooxygenase-2 (COX-2) proteins. Pathological changes were observed by hematoxylin and eosin (H&E) staining of the liver tissue, and Immunohistochemical (IHC) staining was performed to examine liver inflammation through macrophage infiltration. Results : The AST, ALT, LDH and the stress related hormones such as cortisol and corticosterone were significantly decreased in the NSCE treated group compared with stress group. In histological analysis, H&E staining of liver tissues did not detect the hepatic injury or damage in all groups. As a result of IHC staining, it was confirmed that infiltration of macrophages was increased in the stress-induced group, but decreased in the group treated with NSCE. The COX-2 and MAPK proteins expression was significantly increased by restraint-induced stress, but these proteins were decreased in the NSCE treated group. Conclusions : These results suggest that NSCE has the anti-inflammatory activity in restraint-induced stress model, and it is believed that NSCE can be used for the prevention of liver inflammation.

Antioxidant Activity of Citrus Peel and Effect on its Glucose Metabolism in L6 Rat Skeletal Muscle Cells (진피(陳皮)의 항산화 활성 및 L6 근육세포에서 당대사에 미치는 영향)

  • Kim, Soo Hyun;Park, Hae-Jin;Kim, Kyeong Jo;Kim, Min Ju;Lee, Jin A;Lee, Ah Reum;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.33 no.4
    • /
    • pp.101-108
    • /
    • 2018
  • Objectives : This study aimed to effects antioxidant activity of citrus peel extract (CPE) and effect on its glucose metabolism in L6 rat skeletal muscle cells. Methods : Antioxidative activities were evaluated by using 10 kinds of natural materials, and total polyphenol and flavonoid contents were examined. The L6 muscle cells toxicity of CPE was examined by MTT assay. Expression of glucose-related genes in L6 muscle cells by CPE treatment was analyzed by real-time PCR and western blotting. Results : The $IC_{50}$ values of DPPH and ABTS free radical scavenging activity of CPE were ($15.47{\pm}0.26{\mu}g/m{\ell}$ and $12.07{\pm}1.23{\mu}g/m{\ell}$, respectively), effectively clearing DPPH and ABTS. CPE showed total polyphenol and flavonoid contents ($20.30{\pm}0.38$ and $64.20{\pm}0.52$, respectively). The selected CPE were used in experiments using an effective concentration that is not toxic in L6 muscle cells. We investigated insulin receptor substrate-1 (IRS-1), phosphatidylinositol 3-kinase regulatory (PI3KR), Akt, and glucose transporter 4 (GLUT4). mRNA analysis by realtime PCR showed no significant difference, but CPE-treated cells showed a tendency to increase in concentration-dependent manner. However, analysis of protein expression of Akt and GLUT4 by western blotting showed that CPE treatment significantly increased concentration dependent (p<0.001). Conclusions : As a result, citrus peel extract with high antioxidant activity regulates glucose metabolism in L6 muscle cells. Therefore, CPE can be a potential treatment for the treatment of diabetes.

Comparison of the bioactive compounds and anti-inflammatory effects found in different flower colors from Abeliophyllum distichum Nakai (미선나무 꽃 색에 따른 생리활성 화합물 및 항염증 활성 비교)

  • Jang, Tae-Won;Choi, Ji-Soo;Han, So-Yeon;Park, Hye-Jeong;Lee, Da-Yoon;Min, Young-Sil;Park, Jae-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.3
    • /
    • pp.203-213
    • /
    • 2022
  • Abeliophyllum distichum (A. distichum, Korean endemic plant) is one genus and one species in the Oleaceae family. According to the color variation of petals and calyx, A. distichum is classified as A. distichum (white flower), A. distichum for. lilacinum (pink flowers), A. distichum for. eburneum (ivory flowers), and Okhwang 1 (golden flowers). In previous studies, bioactivities (antioxidant, anti-inflammatory, and anti-cancer) of A. distichum have been reported. We conducted a comparison of the differences in bioactive compounds and the anti-inflammatory effects on macrophages among four flowers of A. distichum (FAD). The identification and quantification of glycosides were analyzed by HPLC/PDA and LCMS. These results were shown FAD has rutin, hirsutrin, and acteoside. Antioxidant activity of FAD significantly decreased reactive oxygen species. In addition, FAD reduced the expression of pro-inflammatory mediators (nitric oxide, iNOS, and COX-2) in lipopolysaccharide-induced RAW 264.7 cells. For further study, we investigated the regulation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. In conclusion, FAD may exert anti-inflammatory effects by suppressing inflammatory mediators via regulations of NF-κB and MAPK signaling pathways. Therefore, these findings suggest that FAD is a potential resource as a preventative or therapeutic agent for inflammation.

Cytokine-cytokine receptor interactions in the highly pathogenic avian influenza H5N1 virus-infected lungs of genetically disparate Ri chicken lines

  • Vu, Thi Hao;Hong, Yeojin;Truong, Anh Duc;Lee, Jiae;Lee, Sooyeon;Song, Ki-Duk;Cha, Jihye;Dang, Hoang Vu;Tran, Ha Thi Thanh;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Animal Bioscience
    • /
    • v.35 no.3
    • /
    • pp.367-376
    • /
    • 2022
  • Objective: The highly pathogenic avian influenza virus (HPAIV) is a threat to the poultry industry as well as the economy and remains a potential source of pandemic infection in humans. Antiviral genes are considered a potential factor for HPAIV resistance. Therefore, in this study, we investigated gene expression related to cytokine-cytokine receptor interactions by comparing resistant and susceptible Ri chicken lines for avian influenza virus infection. Methods: Ri chickens of resistant (Mx/A; BF2/B21) and susceptible (Mx/G; BF2/B13) lines were selected by genotyping the Mx dynamin like GTPase (Mx) and major histocompatibility complex class I antigen BF2 genes. These chickens were then infected with influenza A virus subtype H5N1, and their lung tissues were collected for RNA sequencing. Results: In total, 972 differentially expressed genes (DEGs) were observed between resistant and susceptible Ri chickens, according to the gene ontology and Kyoto encyclopedia of genes and genomes pathways. In particular, DEGs associated with cytokine-cytokine receptor interactions were most abundant. The expression levels of cytokines (interleukin-1β [IL-1β], IL-6, IL-8, and IL-18), chemokines (C-C Motif chemokine ligand 4 [CCL4] and CCL17), interferons (IFN-γ), and IFN-stimulated genes (Mx1, CCL19, 2'-5'-oligoadenylate synthase-like, and protein kinase R) were higher in H5N1-resistant chickens than in H5N1-susceptible chickens. Conclusion: Resistant chickens show stronger immune responses and antiviral activity (cytokines, chemokines, and IFN-stimulated genes) than those of susceptible chickens against HPAIV infection.

Analysis of Potential Active Ingredients and Treatment Mechanism of Ponciri Fructus Immaturus for Dermatitis Accompanied by Pruritus Using Network Pharmacology (네트워크 약리학을 이용한 소양증을 동반한 피부 염증에 대한 지실(枳實)의 잠재적 치료기전 탐색)

  • Seo, GwangYeel;Kim, Jundong;Kim, Byunghyun;Kim, Kyu-Seok;Nam, Hae-jeong;Kim, Yoon-Bum
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.35 no.4
    • /
    • pp.75-94
    • /
    • 2022
  • Objectives : To identify the active ingredient of Poncirus Trifoliata Immaturus and to explore the mechanism expected to potentially act on dermatitis accompanied by pruritus. Methods : We conducted the network pharmacological analysis. We selected effective ingredients among the active compounds of Poinciri Fructus Immaturus. We found the target protein of the selected active ingredient, disease(dermatitis accompanied by pruritus) and fexofenadine. Then we established the network between the proteins which Poinciri Fructus Immaturus and fexofenadine intersected with disease respectively, and the coregene was also extracted. After that, the active pathways in the human body involving the groups and coregenes were searched. Results : Total of 7 active ingredients were selected, and 202 target proteins were collected. There were 756 proteins related to inflammatory skin disease accompanied by pruritus, and 75 proteins were related to fexofenadine. 42 proteins crossed by Poinciri Fructus Immaturus with a disease, and 31 proteins crossed by fexofenadine with a disease. 12 proteins were found as a coregene from the proteins that cross Poinciri Fructus Immaturus and disease. Coregenes are involved in 'Nitric-oxide synthase regulator activity', 'Epidermal growth factor receptor signaling pathway'. 2 groups that extracted are invloved in 'Fc receptor signaling pathway', 'Central carbon metabolism in cancer', 'Phosphatidylinositol 3-kinase complex, class IB', and 'omega-hydroxylase P450 pathway'. Conclusion : It is expected that Poinciri Fructus Immaturus will be able to show direct or indirect anti-pruritus and anti-inflammatory effects on skin inflammation accompanied by pruritus in the future. And it is also expected to have a synergy effect with fexofenadine on skin disease.

Comprehensive analysis of miRNAs, lncRNAs and mRNAs profiles in backfat tissue between Daweizi and Yorkshire pigs

  • Chen Chen;Yitong Chang;Yuan Deng;Qingming Cui;Yingying Liu;Huali Li;Huibo Ren;Ji Zhu;Qi Liu;Yinglin Peng
    • Animal Bioscience
    • /
    • v.36 no.3
    • /
    • pp.404-416
    • /
    • 2023
  • Objective: Daweizi (DWZ) is a famous indigenous pig breed in China and characterized by tender meat and high fat percentage. However, the expression profiles and functions of transcripts in DWZ pigs is still in infancy. The object of this study was to depict the transcript profiles in DWZ pigs and screen the potential pathway influence adipogenesis and fat deposition, Methods: Histological analysis of backfat tissue was firstly performed between DWZ and lean-type Yorkshire pigs, and then RNA sequencing technology was utilized to explore miRNAs, lncRNAs and mRNAs profiles in backfat tissue. 18 differentially expressed (DE) transcripts were randomly selected for quantitative real-time polymerase chain reaction (QPCR) to validate the reliability of the sequencing results. Finally, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis were conducted to investigate the potential pathways influence adipocyte differentiation, adipogenesis and lipid metabolism, and a schematic model was further proposed. Results: A total of 1,625 differentially expressed transcripts were identified in DWZ pigs, including 27 upregulated and 45 downregulated miRNAs, 64 upregulated and 119 down-regulated lncRNA, 814 upregulated and 556 downregulated mRNAs. QPCR analysis exhibited strong consistency with the sequencing data. GO and KEGG analysis elucidated that the differentially expressed transcripts were mainly associated with cell growth and death, signal transduction, peroxisome proliferator-activated receptors (PPAR), AMP-activated protein kinase (AMPK), PI3K-Akt, adipocytokine and foxo signaling pathways, all of which are strongly involved in cell development, lipid metabolism and adipogenesis. Further analysis indicated that the BGIR9823_87926/miR-194a-5p/AQP7 network may be effective in the process of adipocyte differentiation or adipogenesis. Conclusion: Our study provides comprehensive insights into the regulatory network of backfat deposition and lipid metabolism in pigs from the point of view of miRNAs, lncRNAs and mRNAs.

Protective effect of chlorophyll-removed ethanol extract of Lycium barbarum leaves against non-alcoholic fatty liver disease (클로로필 제거 구기엽 추출물의 비알코올성 지방간 보호 효과)

  • Hansol Lee;Eun Young Bae;Kyung Ah Kim;Sun Yung Ly
    • Journal of Nutrition and Health
    • /
    • v.56 no.2
    • /
    • pp.123-139
    • /
    • 2023
  • Purpose: This study was conducted to establish whether an ethanol extract of Lycium barbarum leaves (LLE) and an ethanol extract of Lycium barbarum leaves from which chlorophyll has been removed, denoted as LLE(Ch-), have a protective effect against hepatic fat accumulation. Methods: The inhibitory effects of LLE and LLE(Ch-) on liver fat accumulation were examined in C57BL/6 mice with non-alcoholic fatty liver disease (NAFLD) induced by an methionine and choline deficient diet and in HepG2 cells with palmitic acid-induced fat accumulation. Results: The plasma triglyceride, aspartate aminotransferase, and alanine aminotransferase levels were lower in the LLE(Ch-) group, whereas the plasma ALT activity decreased significantly in the LLE group. In both the LLE and the LLE(Ch-) groups, the triglyceride and cholesterol contents in the hepatic tissue were significantly reduced. A greater inhibitory effect on tissue fat accumulation was observed in the LLE(Ch-) group than in the LLE group. In HepG2 cells, LLE and LLE(Ch-) were non-toxic up to a concentration of 1,000 ㎍/mL. Compared to the control group, intracellular fat accumulation in the LLE and LLE(Ch-) groups were significantly reduced at concentrations of 200 ㎍/mL and 500 ㎍/mL, respectively. The expression of phosphorylated adenosine monophosphate-activated protein kinase and phosphorylated acetyl-CoA carboxylase in both LLE groups increased at the concentrations of 100 ㎍/mL and 500 ㎍/mL. The fatty acid synthase expression was suppressed in a concentration-dependent manner at 10 ㎍/mL. Conclusion: The examined two ethanol extracts of LLE inhibit hepatic fat accumulation in NAFLD. This effect was more pronounced in the LLE(Ch-) group. Therefore, these 2 extracts have an anti-steatosis effect and can be used for NAFLD treatment.

MHY2251, a New SIRT1 Inhibitor, Induces Apoptosis via JNK/p53 Pathway in HCT116 Human Colorectal Cancer Cells

  • Yong Jung Kang;Young Hoon Kwon;Jung Yoon Jang;Jun Ho Lee;Sanggwon Lee;Yujin Park;Hyung Ryong Moon;Hae Young Chung;Nam Deuk Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.73-81
    • /
    • 2023
  • Sirtuins (SIRTs) belong to the nicotinamide adenine dinucleotide (NAD+)-dependent class III histone deacetylase family. They are key regulators of cellular and physiological processes, such as cell survival, senescence, differentiation, DNA damage and stress response, cellular metabolism, and aging. SIRTs also influence carcinogenesis, making them potential targets for anticancer therapeutic strategies. In this study, we investigated the anticancer properties and underlying molecular mechanisms of a novel SIRT1 inhibitor, MHY2251, in human colorectal cancer (CRC) cells. MHY2251 reduced the viability of various human CRC cell lines, especially those with wild-type TP53. MHY2251 inhibited SIRT1 activity and SIRT1/2 protein expression, while promoting p53 acetylation, which is a target of SIRT1 in HCT116 cells. MHY2251 treatment triggered apoptosis in HCT116 cells. It increased the percentage of late apoptotic cells and the sub-G1 fraction (as detected by flow cytometric analysis) and induced DNA fragmentation. In addition, MHY2251 upregulated the expression of FasL and Fas, altered the ratio of Bax/Bcl-2, downregulated the levels of pro-caspase-8, -9, and -3 proteins, and induced subsequent poly(ADP-ribose) polymerase cleavage. The induction of apoptosis by MHY2251 was related to the activation of the caspase cascade, which was significantly attenuated by pre-treatment with Z-VAD-FMK, a pan-caspase inhibitor. Furthermore, MHY2251 stimulated the phosphorylation of c-Jun N-terminal kinase (JNK), and MHY2251-triggered apoptosis was blocked by pre-treatment with SP600125, a JNK inhibitor. This finding indicated the specific involvement of JNK in MHY2251-induced apoptosis. MHY2251 shows considerable potential as a therapeutic agent for targeting human CRC via the inhibition of SIRT1 and activation of JNK/p53 pathway.

Systemic TM4SF5 overexpression in ApcMin/+ mice promotes hepatic portal hypertension associated with fibrosis

  • Joohyeong, Lee;Eunmi, Kim;Min-Kyung, Kang;Jihye, Ryu;Ji Eon, Kim;Eun-Ae, Shin;Yangie, Pinanga;Kyung-hee, Pyo;Haesong, Lee;Eun Hae, Lee;Heejin, Cho;Jayeon, Cheon;Wonsik, Kim;Eek-Hoon, Jho;Semi, Kim;Jung Weon, Lee
    • BMB Reports
    • /
    • v.55 no.12
    • /
    • pp.609-614
    • /
    • 2022
  • Mutation of the gene for adenomatous polyposis coli (APC), as seen in ApcMin/+ mice, leads to intestinal adenomas and carcinomas via stabilization of β-catenin. Transmembrane 4 L six family member 5 (TM4SF5) is involved in the development of non-alcoholic fatty liver disease, fibrosis, and cancer. However, the functional linkage between TM4SF5 and APC or β-catenin has not been investigated for pathological outcomes. After interbreeding ApcMin/+ with TM4SF5-overexpressing transgenic (TgTM4SF5) mice, we explored pathological outcomes in the intestines and livers of the offspring. The intestines of 26-week-old dual-transgenic mice (ApcMin/+:TgTM4SF5) had intramucosal adenocarcinomas beyond the single-crypt adenomas in ApcMin/+ mice. Additional TM4SF5 overexpression increased the stabilization of β-catenin via reduced glycogen synthase kinase 3β (GSK3β) phosphorylation on Ser9. Additionally, the livers of the dualtransgenic mice showed distinct sinusoidal dilatation and features of hepatic portal hypertension associated with fibrosis, more than did the relatively normal livers in ApcMin/+ mice. Interestingly, TM4SF5 overexpression in the liver was positively linked to increased GSK3β phosphorylation (opposite to that seen in the colon), β-catenin level, and extracellular matrix (ECM) protein expression, indicating fibrotic phenotypes. Consistent with these results, 78-week-old TgTM4SF5 mice similarly had sinusoidal dilatation, immune cell infiltration, and fibrosis. Altogether, systemic overexpression of TM4SF5 aggravates pathological abnormalities in both the colon and the liver.