Acknowledgement
We thank Department of Biochemistry and Immunology in the National Institute of Veterinary Research, Vietnam for performing animal experiments and collecting samples.
References
- Alexander DJ. An overview of the epidemiology of avian influenza. Vaccine 2007;25:5637-44. https://doi.org/10.1016/j.vaccine.2006.10.051
- Chapter O. 10.4. Infection with avian influenza viruses [Internet]. Paris, France: World Organisation for Animal Health; c2001 [2021 July 19]. In: Terrestrial animal health code. https://www.oie.int/fileadmin/Home/eng/Health_standards/tahc/current/chapitre_avian_influenza_viruses.pdf
- de Jong JC, Claas ECJ, Osterhaus ADME, Webster RG, Lim WL. A pandemic warning? Nature 1997;389:554. https://doi.org/10.1038/39218
- Peiris JM, De Jong MD, Guan Y. Avian influenza virus (H5N1): a threat to human health. Clin Microbiol Rev 2007;20:243-67. https://doi.org/10.1128/CMR.00037-06
- Staeheli P, Pitossi F, Pavlovic J. Mx proteins: GTPases with antiviral activity. Trends Cell Biol 1993;3:268-72. https://doi.org/10.1016/0962-8924(93)90055-6
- Seyama T, Ko J, Ohe M, et al. Population research of genetic polymorphism at amino acid position 631 in chicken Mx protein with differential antiviral activity. Biochem Genet 2006;44:432-43. https://doi.org/10.1007/s10528-006-9040-3
- Jin Y-C, Wei P, Wei X-X, Zhao Z-Y, Li Y. Marek's disease resistant/susceptible MHC haplotypes in Xiayan chickens identified on the basis of BLB2 PCR-RFLP and BLB2/BF2 sequence analyses. Br Poult Sci 2010;51:530-9. https://doi.org/10.1080/00071668.2010.508489
- Macklin KS, Ewald SJ, Norton RA. Major histocompatibility complex effect on cellulitis among different chicken lines. Avian Pathol 2002;31:371-6. https://doi.org/10.1080/03079450220141642
- Boonyanuwat K, Thummabutra S, Sookmanee N, Vatchavalkhu V, Siripholvat V. Influences of major histocompatibility complex class I haplotypes on avian influenza virus disease traits in Thai indigenous chickens. Anim Sci J 2006;77:285-9. https://doi.org/10.1111/j.1740-0929.2006.00350.x
- De Jong MD, Simmons CP, Thanh TT, et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med 2006;12:1203-7. https://doi.org/10.1038/nm1477
- Saito LB, Diaz-Satizabal L, Evseev D, et al. IFN and cytokine responses in ducks to genetically similar H5N1 influenza A viruses of varying pathogenicity. J Gen Virol 2018;99:464-74. https://doi.org/10.1099/jgv.0.001015
- Ranaware PB, Mishra A, Vijayakumar P, et al. Genome wide host gene expression analysis in chicken lungs infected with avian influenza viruses. PLoS One 2016;11:e0153671. https://doi.org/10.1371/journal.pone.0153671
- Wang Y, Lupiani B, Reddy SM, Lamont SJ, Zhou H. RNA-seq analysis revealed novel genes and signaling pathway associated with disease resistance to avian influenza virus infection in chickens. Poult Sci 2014;93:485-93. https://doi.org/10.3382/ps.2013-03557
- Hong Y, Truong AD, Lee J, et al. Exosomal miRNA profiling from H5N1 avian influenza virus-infected chickens. Vet Res 2021;52:36. https://doi.org/10.1186/s13567-021-00892-3
- Huprikar J, Rabinowitz S. A simplified plaque assay for influenza viruses in Madin-Darby kidney (MDCK) cells. J Virol Methods 1980;1:117-20. https://doi.org/10.1016/0166-0934(80)90020-8
- Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262
- Yong Y-H, Liu S-F, Hua G-H, et al. Goose toll-like receptor 3 (TLR3) mediated IFN-γ and IL-6 in anti-H5N1 avian influenza virus response. Vet Immunol Immunopathol 2018;197:31-8. https://doi.org/10.1016/j.vetimm.2018.01.010
- Abdul-Cader MS, Ahmed-Hassan H, Amarasinghe A, et al. Toll-like receptor (TLR) 21 signalling-mediated antiviral response against avian influenza virus infection correlates with macrophage recruitment and nitric oxide production. J Gen Virol 2017;98:1209-23. https://doi.org/10.1099/jgv.0.000787
- Wei L, Jiao P, Yuan R, et al. Goose toll-like receptor 7 (TLR7), myeloid differentiation factor 88 (MyD88) and antiviral molecules involved in anti-H5N1 highly pathogenic avian influenza virus response. Vet Immunol Immunopathol 2013;153:99-106. https://doi.org/10.1016/j.vetimm.2013.02.012
- Barjesteh N, Abdelaziz KT, Sharif S. The role of IRF7 and NF-κB pathways in the induction of antiviral responses in chicken tracheal epithelial cells following exposure to TLR3 and 4 ligands. J Immunol 2016;196 (Suppl 1):216.8.
- Nturibi E, Bhagwat AR, Coburn S, Myerburg MM, Lakdawala SS. Intracellular colocalization of influenza viral RNA and Rab11A is dependent upon microtubule filaments. J Virol 2017;91:e01179-17. https://doi.org/10.1128/JVI.01179-17
- Cheung C, Poon L, Lau A, et al. Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease? The Lancet 2002;360:1831-7. https://doi.org/10.1016/S0140-6736(02)11772-7
- Salomon R, Hoffmann E, Webster RG. Inhibition of the cytokine response does not protect against lethal H5N1 influenza infection. Proc Natl Acad Sci USA 2007;104:12479-81. https://doi.org/10.1073/pnas.0705289104
- De Silva Senapathi U, Abdul-Cader MS, Amarasinghe A, et al. The in ovo delivery of CpG oligonucleotides protects against infectious bronchitis with the recruitment of immune cells into the respiratory tract of chickens. Viruses 2018;10:635. https://doi.org/10.3390/v10110635
- Rong E, Wang X, Chen H, et al. Molecular mechanisms for the adaptive switching between the OAS/RNase L and OASL/RIG-I pathways in birds and mammals. Front Immunol 2018;9:1398. https://doi.org/10.3389/fimmu.2018.01398
- Garcia MA, Gil J, Ventoso I, et al. Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev 2006;70:1032-60. https://doi.org/10.1128/MMBR.00027-06
- Rohaim MA, Santhakumar D, Naggar RFE, et al. Chickens expressing IFIT5 ameliorate clinical outcome and pathology of highly pathogenic avian influenza and velogenic newcastle disease viruses. Front Immunol 2018;9:2025. https://doi.org/10.3389/fimmu.2018.02025
- Wang X, Hinson ER, Cresswell P. The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts. Cell Host Microbe 2007;2:96-105. https://doi.org/10.1016/j.chom.2007.06.009
- Forster R, Davalos-Misslitz AC, Rot A. CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol 2008;8:362-71. https://doi.org/10.1038/nri2297
- Tag-EL-Din-Hassan HT, Morimatsu M, Agui T. Functional analysis of duck, goose, and ostrich 2'-5'-oligoadenylate synthetase. Infect Genet Evol 2018;62:220-32. https://doi.org/10.1016/j.meegid.2018.04.036
- Pichlmair A, Lassnig C, Eberle C-A, et al. IFIT1 is an antiviral protein that recognizes 5'-triphosphate RNA. Nat Immunol 2011;12:624-30. https://doi.org/10.1038/ni.2048