• 제목/요약/키워드: Protein Expression

검색결과 9,536건 처리시간 0.042초

Effects of Dyglomera® on leptin expression, pro-inflammatory cytokines, and adipocyte browning in 3T3-L1 cells

  • Da-Eun Min;Sung-Kwon Lee;Hae Jin Lee;Bong-Keun Choi;Dong-Ryung Lee
    • Journal of Applied Biological Chemistry
    • /
    • 제66권
    • /
    • pp.186-196
    • /
    • 2023
  • Dyglomera® is an aqueous ethanol extract derived from the fruit and pods of Dichrostachys glomerata. A previous study has revealed that Dyglomera regulates adipogenesis and lipolysis by modulating AMP-activated protein kinase (AMPK) phosphorylation and increased expression levels of lipolysis-related proteins in white adipose tissue of high fat diet-induced mice and 3T3-L1 adipocyte cells. To further investigate mechanisms of Dyglomera, additional studies were performed using 3T3-L1 cells. Results revealed that Dyglomera downregulated adipogenesis by inhibiting the protein kinase B/mammalian target of rapamycin signaling pathway and reconfirmed that it downregulated gene expression levels of proliferator-activated receptor (PPAR)-γ, CCAAT enhancer binding protein α, sterol-regulation element-binding protein-1c. Dyglomera also reduced adipokines such as tumor necrosis factor alpha, interleukin-1β, and interleukin 6 by regulating leptin expression. Moreover, Dyglomera promoted beige-and-brown adipocyte-related phenotypes and regulated metabolism by increasing mitochondrial number and expression levels of genes such as T-box protein 1, transmembrane protein 26, PR domain 16, and cluster of differentiation 40 as well as thermogenic factors such as uncoupling protein 1, proliferator-activated receptor-gamma co-activator-1α, Sirtuin 1, and PPARα through AMPK activation. Thus, Dyglomera not only can inhibit adipogenesis, but also can promote lipolysis and thermogenesis and regulate metabolism by affecting adipokine secretion from 3T3-L1 adipocytes.

Swedish mutation within amyloid precursor protein modulates global gene expression towards the pathogenesis of Alzheimer's disease

  • Shin, Jong-Yeon;Yu, Saet-Byeol;Yu, Un-Young;Ahnjo, Sang-Mee;Ahn, Jung-Hyuck
    • BMB Reports
    • /
    • 제43권10호
    • /
    • pp.704-709
    • /
    • 2010
  • The Swedish mutation (K595N/M596L) of amyloid precursor protein (APP-swe) has been known to increase abnormal cleavage of cellular APP by Beta-secretase (BACE), which causes tau protein hyperphosphorylation and early-onset Alzheimer's disease (AD). Here, we analyzed the effect of APP-swe in global gene expression using deep transcriptome sequencing technique. We found 283 genes were down-regulated and 348 genes were up-regulated in APP-swe expressing H4-swe cells compared to H4 wild-type cells from a total of approximately 74 million reads of 38 base pairs from each transcriptome. Two independent mechanisms such as kinase and phosphatase signaling cascades leading hyperphosphorylation of tau protein were regulated by the expression of APP-swe. Expressions of catalytic subunit as well as several regulatory subunits of protein phosphatases 2A were decreased. In contrast, expressions of tau-phosphorylating glycogen synthase kinase $3\beta$(GSK-3$\beta$), cyclin dependent kinase 5 (CDK5), and cAMP-dependent protein kinase A (PKA) catalytic subunit were increased. Moreover, the expression of AD-related Aquaporin 1 and presenilin 2 expression was regulated by APP-swe. Taken together, we propose that the expression of APP-swe modulates global gene expression directed to AD pathogenesis.

이배체 및 삼배체 전복(Haliotis discus hannai) 치패에서 주요 열충격 단백질 유전자들(heat shock protein genes)의 발현 특징 (Expression Pattern of Major Heat Shock Protein Genes in Diploid and Triploid Abalone Haliotis discus hannai Juveniles)

  • 박철지;김은정;남윤권
    • 한국수산과학회지
    • /
    • 제53권4호
    • /
    • pp.515-523
    • /
    • 2020
  • Basal and heat shock-induced mRNA expression patterns of major heat shock protein (HSP) genes, including those encoding heat shock protein (HSP) 90, HSP70, HSP70-12A, heat shock inducible protein 70 (HSIP70), heat shock binding protein 1 (HSPBP1), HSP60, and HSP40 were examined in the gill and hepatopancreas of 1-year-old diploid and triploid abalone Haliotis discus hannai juveniles. Under non-stimulated conditions at 19℃, triploid abalones displayed, in general, higher mRNA levels of various HSPs (HSP70, HSIP70, HSPBP1, HSP70-12A, and HSP60 in the gill and HSIP70, HSPBP1, and HSP60 in the hepatopancreas) than did communally cultured diploids. Conversely, only the hepatopancreatic expression of HSP70-12A was higher in diploids than in triploids. However, the fold changes in gene expression in response to an acute thermal challenge (elevation from 19 to 30℃) were generally greater in diploids than in triploids, such that the difference in basal expression was diminished, weakened, or even reversed after heat shock treatment. However, unlike other HSP genes, the basal expression of HSP60 (higher in 3N) was more pronounced after heat shock treatment. Collectively, the results of this study suggest that triploid abalones have different capacities for not only basal expression but also the heat-induced expression of HSPs in an HSP member-dependent manner.

CND41, a DNA-binding protein in chloroplast nucleoid, and its function

  • Sato, Fumihiko;Murakami, Shinya;Chatani, Hiroshi;Nakano, Takeshi
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1999년도 제13회 식물생명공학심포지움 New Approaches to Understand Gene Function in Plants and Application to Plant Biotechnology
    • /
    • pp.51-56
    • /
    • 1999
  • Plastids, which are organelles unique to plant cells, bear their own genome that is organized into DNA-protein complexes (nucleoids). Regulation of gene expression in the plastid has been extensively investigated because this organelle plays an important role in photosynthesis. Few attempts, however, have been made to characterize the regulation of plastid gene expression at the chromosomal structure, using plastid nucleoids. In this report, we summarize the recent progress in the characterization of DNA-binding proteins in plastids, with special emphasis on CND41, a DNA binding protein, which we recently identified in the choloroplast nucleoids from photomixotrophically cultured tobacco cells. CND41 is a protein of 502 amino acids which consisted of a transit peptide of 120 amino acids and a mature protein of 382 amino acids. The N-terminal of the 'mature' protein has lysine-rich region which is essential for DNA-binding. CNA41 also showed significant identities to some aspartyl proteases. Protease activity of purified CND41 has been recently confirmed and characterized. On the other hand, characterization of accumulation of CND41 both in wild type and transgenic tobacco with reduced amount of CND41 suggests that CND41 is a negative regulator in chloroplast gene expression. Further investigation indicated that gene expression of CND41 is cell-specifically and developmentally regulated as well as sugar-induced expression. The reduction of CND41 expression in transgenic tobacco also brought the stunted plant growth due to the reduced cell length in stem. GA3 treatment on apical meristem reversed the dwarf phenotype in the transformants. Effects of CND41 expression on GA biosynthesis will be discussed.

  • PDF

Proteomic Approach to Aging Research

  • 김동수
    • 한국생명과학회:학술대회논문집
    • /
    • 한국생명과학회 2000년도 제28회 학술심포지엄
    • /
    • pp.9-10
    • /
    • 2000
  • The aging process is multifactorial and results from the combined effects of inherited(genetic) and acquired factors including life style, food habits, physical activity, and diseases. That give rise to the various approaches in aging. We are trying to study biological changes with aging, In detail we are focused on gene and protein function accompanied by normal or abnormal aging process, especially our efforts are aimed at revealing the functional relationship of proteins in aging as a final product of gene. We expect that proteomic approach to the study of protein function involved in aging should give us variety of integrated data to understand biological changes of long lived lives, We have applied expression proteomics to rat liver bred in dietary restriction or in at libitum to elucidate the effects of food habit on aging. Expression proteomics shows us protein profile in a selected tissue or cells as a whole and gives us the information about protein expression level, posttranslational modification and degenerative modification of expressed proteins. Comparative analysis of young and old rat liver by two dimensional gels shows that gene expression of several proteins was down regulated in old rats and some protein expression level is increased with aging. Dietary restriction slows down these changes of gene expression and in some proteins there's no difference in protein expression level at same ages in comparison with rats bred in at libitum. About forty protein was identified by peptide mass fingerprint with MALDI-TOF and rest of the protein of interest is in the course of identification, Also we are trying to make mitochondrial and cytosolic proteom reference map. These suborganelle proteom map will gives us the information about low abundance proteins and cellular localization of proteins. Proteomics is a growing methodology to study biological system. High throughput qualitative and qualitative aspect of this approach will gives us large amount of integrated information and speed up our understanding about biological system

  • PDF

인간 제대정맥 내피세포에서 산수유와 산수유청혈플러스의 항염증효과 (Anti-inflammatory Effect of Cornus Officinalis fruit extract and Cornus Officinalis Fruit Cheonghyeol Plus in Human Umbilical Vein Endothelial Cell)

  • 김정희;유호룡;설인찬;김윤식
    • 대한한의학회지
    • /
    • 제43권3호
    • /
    • pp.106-121
    • /
    • 2022
  • Objectives: The purpose of this study was to investigate the anti-inflammatory effect of Cornus Officinalis fruit extract(CE) and Cornus Officinalis Fruit Cheonghyeol Plus(CCP) in Human Umbilical Vein Endothelial Cell. Methods: We measured cell viability of CE, CCP and treated HUVEC with TNF-α. We measured the mRNA expression levels of KLF2, eNOS, MCP-1, ICAM-1, VCAM-1, the protein expression levels of KLF2, eNOS, MCP-1, ICAM-1, VCAM-1, and the protein phosphorylation level of ERK, JNK, p38 and the biomarker expression levels of MCP-1, ICAM-1, VCAM-1. Results: 1.CE incresed the mRNA, protein expression levels of KLF2, eNOS at concentrations of 100㎍/㎖ compared to the control group. CE decresed the mRNA, protein and biomarker expression levels of MCP-1,ICAM-1,VCAM-1 at concentrations of 100㎍/㎖ compared to the control group. CE decresed the protein phosphorylation level of p38 at concentrations of 100㎍/㎖ compared to the control group. 2. CCP incresed the mRNA, protein expression levels of KLF2, eNOS at concentrations of 100㎍/㎖ or more compared to the control group. CCP decresed the mRNA, protein and biomarker expression levels of MCP-1, ICAM-1, VCAM-1 at concentrations of 100㎍/㎖ or more compared to the control group. CCP decresed the protein phosphorylation level of ERK at concentrations of 100㎍/㎖ or more, p38 at concentrations of 200㎍/㎖ or more, and JNK at concentrations of 400㎍/㎖ compared to the control group. Conclusions: These results present that CE and CCP has anti-inflammatory effect in HUVEC. So, it could help treat or prevent inflammation in vein caused by dyslipidemia and contribute prevention of cardiovascular and cerebrovascular cerebrovascular diseases.

Rapid and Simple Method to Prepare Functional Pfu DNA Polymerase Expressed in Escherichia coli Periplasm

  • Chae, Young-Kee;Jeon, Woo-Chun;Cho, Kyoung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권5호
    • /
    • pp.841-843
    • /
    • 2002
  • Pfu DNA polymerase from Pyrococcus furiosus was expressed in the E. coli periplasm, and the fully active polymerase was partially purified by applying osmotic shock, ammonium sulfate precipitation, and heat treatment. This method represents a new way of expressing and purifying functional Pfu DNA polymerase without the use of chromatography.

Porphyromonas gingivalis의 열충격단백 발현조절 환경인자에 관한 연구 (Environmental factors regulating the expression of Porphyromonas gingivalis heat shock protein)

  • 최점일
    • Journal of Periodontal and Implant Science
    • /
    • 제34권1호
    • /
    • pp.29-33
    • /
    • 2004
  • The present study was done to evaluate the environmental factors responsible for the expression of Porphyromonas gingivalis heat shock protein. The intensity of the heat shock protein gene expression was comparable to those seen by the heat shock ptreatment of the bacteria $(44^{\circ}C)$ when the bacteria was grown as a mixed culture or biofilm state at $37^{\circ}C$.

C형 간염바이러스 코어 단백질에 의한 p53 활성화와 프로모터 과메틸화를 통한 E6AP 발현 억제 (Hepatitis C Virus Core Protein Activates p53 to Inhibit E6-associated Protein Expression via Promoter Hypermethylation)

  • 곽주리;장경립
    • 생명과학회지
    • /
    • 제28권9호
    • /
    • pp.1007-1015
    • /
    • 2018
  • E6AP (E6-associated protein)는 C형 간염바이러스(hepatitis C virus, HCV)의 코어 단백질 유비퀴틴화와 프로테오좀 분해를 유도하여 캡시드 조립을 저해함으로써 HCV 복제를 억제하는 것으로 알려져 있다. 반면에 HCV 코어 단백질은 숙주의 항바이러스 방어계에 대항하고 자신의 유비퀴틴-의존적 프로테아좀 분해를 막기 위하여 DNA 메틸화를 통하여 E6AP 발현을 저해하는 전략을 진화과정에서 획득하였다. 본 연구에서는 HCV 코어 단백질이 E6AP 발현을 저해하는 기전을 밝혀내고자 하였다. HCV 코어 단백질은 HepG2 세포에서 DNA 메틸화 효소들인 DNMT1, 3a 및 3b의 단백질 수준과 효소 활성을 증가시켜 프로모터 과메틸화를 통하여 E6AP 발현을 저해하였지만 p53를 발현하지 않는 Hep3B 세포에서는 이러한 효과들이 관찰되지 않았다. 흥미롭게도 Hep3B 세포에 p53만 과발현시키면 HCV 코어 단백질이 없더라도 DNMT가 활성화되고 프로모터 과메틸화를 통하여 E6AP 발현이 저해되었다. 또한 p53 녹다운 및 과발현 실험을 통하여 p53 활성화가 HCV 코어 단백질의 효과에 필수적임을 알 수 있었다. 이로 인하여 Hep3B 보다 HepG2 세포에서 낮은 수준의 유비퀴틴화된 HCV 코어 단백질이 검출되었다. 따라서 HCV 코어 단백질은 p53-의존적으로 자신의 유비퀴틴-매개성 프로테아좀 분해를 저해한다.

Investigation of Agrobacterium-mediated Transient dsRNA Expression in Tobacco

  • Choi, Wonkyun;Lim, HyeSong;Seo, Hankyu;Kim, Dong Wook
    • 생태와환경
    • /
    • 제52권4호
    • /
    • pp.394-402
    • /
    • 2019
  • The Agrobacterium tumefaciens mediated gene transfer is widely used to generate genetic transformation of plants and transient assay of temporal exogenous gene expression. Syringe infiltration system into tobacco (Nicotiana benthamiana) leaves is a powerful tool for transient expression of target protein to study protein localization, protein-protein binding and protein production. However, the protocol and technical information of transient gene expression, especially double strand RNA (dsRNA), in tobacco using Agrobacterium is not well known. Recently, dsRNA is crucial for insecticidal effect on destructive agronomic pest such as Corn rootworm. In this study, we investigated the factor influencing the dsRNA expression efficiency of syringe agro-infiltration in tobacco. To search the best combination for dsRNA transient expression in tobacco, applied two Agrobacterium cell lines and three plant vector systems. The efficiency of dsRNA expression has estimated by real-time PCR and digital PCR. As a result, pHellsgate12 vector constructs showed the most effective accumulation of dsRNA in the cell. These results indicated that the efficiency of dsRNA expression was depending on the kind of vector rather than Agrobacterium cells. In summary, the optimized combination of transient dsRNA expression system in tobacco might be useful to in vivo dsRNA expression for functional study and risk assessment of dsRNA.