• Title/Summary/Keyword: Protein Degradability

Search Result 143, Processing Time 0.028 seconds

Evaluation of feed value of a by-product of pickled radish for ruminants: analyses of nutrient composition, storage stability, and in vitro ruminal fermentation

  • Jeon, Seoyoung;Sohn, Keun-Nam;Seo, Seongwon
    • Journal of Animal Science and Technology
    • /
    • v.58 no.9
    • /
    • pp.34.1-34.9
    • /
    • 2016
  • Background: By-products of pickled radish (BPR) are considered food waste. Approximately 300 g/kg of the total mass of raw materials becomes BPR. Production of pickled radish has grown continuously and is presently about 40,000 metric tons annually in Korea. The objective of the present study was thus to explore the possibility of using BPR as a ruminant feed ingredient. Results: BPR contained a large amount of moisture (more than 800 g/kg) and ash, and comprised mostly sodium (103 g/kg DM) and chloride (142 g/kg DM). On a dry matter basis, the crude protein (CP) and ether extract (EE) levels in BPR were 75 g/kg and 7 g/kg, respectively. The total digestible nutrient (TDN) level was 527 g/kg and the major portion of digestible nutrients was carbohydrate; 88 % organic matter (OM) was carbohydrate and 65 % of total carbohydrate was soluble or degradable fiber. The coefficient of variation (CV) of nutrient contents among production batches ranged from 4.65 to 33.83 %. The smallest CV was observed in OM, and the largest, in EE. The variation in CP content was relatively small (10.11 %). The storage stability test revealed that storage of BPR at $20^{\circ}C$ (room temperature) might not cause spoilage for 4 d, and possibly longer. If BPR is refrigerated, spoilage can be deferred for 21 d and longer. The in vitro ruminal fermentation study showed that substitution of annual ryegrass straw with BPR improved ruminal fermentation, as evidenced by an increase in VFA concentration, DM degradability, and total gas production. Conclusion: The major portion of nutrients in BPR is soluble or degradable fiber that can be easily fermented in the rumen without adverse effects, to provide energy to ruminant animals. Although its high sodium chloride content needs to be considered when formulating a ration, BPR can be successfully used as a feed ingredient in a ruminant diet, particularly if it is one component of a total mixed ration.

Effect of different harvesting times on the nutritive value and fermentation characteristics of late and early-maturing forage oats by rumen microbes

  • Zhang, Yan;Lee, Ye Hyun;Nogoy, Kim Margarette;Choi, Chang Weon;Kim, Do Hyung;Li, Xiang Zi;Choi, Seong Ho
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.125-135
    • /
    • 2019
  • Late-maturing Dark Horse, and early-maturing High Speed oat varieties were seeded on March 3, 2016 and harvested on three periods: May 31, June 10, and June 20 coded as early, mid, and late-harvest, respectively. Dried and ground samples were subjected to chemical analysis to determine nutritional values such as crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), ether extract (EE), organic matter (OM), and total digestible nutrient (TDN). Effective degradability (ED) of nutrients and fermentation characteristics including volatile fatty acid (VFA) composition, pH, gas production, and ammonia-N concentration were evaluated through an in vitro digestion method. Varieties of oat hays showed significant difference in terms of nutritional value, ED, and fermentation characteristics. Dark Horse showed higher CP and OM, and lower EE contents than High Speed. Dark Horse also showed higher EDDM (dry matter), NDF, ADF, and OM than High Speed, and although High Speed showed higher pH and ammonia-N, it had lower gas and total VFA production than Dark Horse. However, in terms of harvest period, significant difference was only observed in Dark Horse where early-harvest increased the CP, and late-harvest increased the NDF and OM contents. In addition, early-harvest of Dark Horse increased the EDDM and EDNDF of the forage. Therefore, early-harvest of late-maturing Dark Horse would give better nutrient efficiency than High Speed. Allowing Dark Horse to advance in maturity would decrease its nutrient productivity and efficiency.

Protein Fractionation of Whole Crop Silages, and Effect of Borate-phosphate Buffer Extraction on In vitro Fermentation Characteristics, Gas Production and Degradation (사료작물 사일리지의 단백질 분획 및 Borate-phosphate Buffer 추출이 In vitro 발효성상, Gas 발생 그리고 분해율에 미치는 효과)

  • Shinekhuu, Judder;Jin, Guang-Lin;Ji, Byung-Ju;Li, Xiangzi;Oh, Young-Kyoon;Hong, Seong-Ku;Song, Man-Kang
    • Journal of Animal Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.369-378
    • /
    • 2009
  • Protein fractionation was evaluated from whole crop silages of rye (RS), wheat (WS), triticale (TS), oat (OS), barley (BS), and rice straw silage (RSS), and in vitro trial was carried out to examine the effect of silage and extraction of soluble protein on fermentation characteristics, total gas production and degradation. Soluble protein of silages was extracted with borate-phosphate buffer, and fermentation characteristics, gas production and degradation of silages were estimated by incubating anaerobically the mixed solution of strained rumen fluid and artificial saliva (1:1, v/v) containing dried and ground silages placed in nylon bag at $39^{\circ}C$ up to 48h. Soluble protein (SP) content was lowest for RSS as 2.11% in total CP compared to those for other silages. Highest A fraction (NPN) was observed from RS (74.33% of total CP) while those from TS and RSS were relatively low (48%). B2 fraction was relatively higher for RS, RSS and WS than for TS and BS. $B_3$ fraction was lowest in WS among silages. C fraction (27.07) in RSS was higher than in other silages (1.40~9.93%). pH in incubation solution was increased (P<0.01~P<0.001) for extracted silages up to 12h but decreased (P<0.01) at 48h for non-extracted ones. Contents of ammonia-N (P<0.001) and total VFA (P<0.01~P<0.001) were higher for non-extracted silages than for extracted ones. Acetate proportion was increased (P<0.001) in buffer extracted silages while those of propionate and butyrate were decreased (P<0.001) up to 24h incubation. Increased (P<0.001) total gas production was obtained from non-extracted silages up to 12h while gas production was increased (P<0.01) in extracted ones thereafter. In vitro degradation of dry matter and CP was increased (P<0.001) in non-extracted silages but that of neutral detergent fiber was increased (P<0.001) in extracted ones without difference among silages. Difference in mean values of degradability for each silage prior to- and post extraction with borate buffer, however, was not found among silages. It may be concluded that high NPN content of silages may reduce the protein availability in silages and borate buffer soluble components in silages can stimulate the early stage of fermentation.

CHANGING THE ANIMAL WORLD WITH NIR : SMALL STEPS OR GIANT LEAPS\ulcorner

  • Flinn, Peter C.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1062-1062
    • /
    • 2001
  • The concept of “precision agriculture” or “site-specific farming” is usually confined to the fields of soil science, crop science and agronomy. However, because plants grow in soil, animals eat plants, and humans eat animal products, it could be argued (perhaps with some poetic licence) that the fields of feed quality, animal nutrition and animal production should also be considered in this context. NIR spectroscopy has proved over the last 20 years that it can provide a firm foundation for quality measurement across all of these fields, and with the continuing developments in instrumentation, computer capacity and software, is now a major cog in the wheel of precision agriculture. There have been a few giant leaps and a lot of small steps in the impact of NIR on the animal world. These have not been confined to the amazing advances in hardware and software, although would not have occurred without them. Rapid testing of forages, grains and mixed feeds by NIR for nutritional value to livestock is now commonplace in commercial laboratories world-wide. This would never have been possible without the pioneering work done by the USDA NIR Forage Research Network in the 1980's, following the landmark paper of Norris et al. in 1976. The advent of calibration transfer between instruments, algorithms which utilize huge databases for calibration and prediction, and the ability to directly scan whole grains and fresh forages can also be considered as major steps, if not leaps. More adventurous NIR applications have emerged in animal nutrition, with emphasis on estimating the functional properties of feeds, such as in vivo digestibility, voluntary intake, protein degradability and in vitro assays to simulate starch digestion. The potential to monitor the diets of grazing animals by using faecal NIR spectra is also now being realized. NIR measurements on animal carcasses and even live animals have also been attempted, with varying degrees of success, The use of discriminant analysis in these fields is proving a useful tool. The latest giant leap is likely to be the advent of relatively low-cost, portable and ultra-fast diode array NIR instruments, which can be used “on-site” and also be fitted to forage or grain harvesters. The fodder and livestock industries are no longer satisfied with what we once thought was revolutionary: a 2-3 day laboratory turnaround for fred quality testing. This means that the instrument needs to be taken to the samples rather than vice versa. Considerable research is underway in this area, but the challenge of calibration transfer and maintenance of instrument networks of this type remains. The animal world is currently facing its biggest challenges ever; animal welfare, alleged effects of animal products on human health, environmental and economic issues are difficult enough, but the current calamities of BSE and foot and mouth disease are “the last straw” NIR will not of course solve all these problems, but is already proving useful in some of these areas and will continue to do so.

  • PDF

Comparison of Dry Matter Intake, Digestibility, and Nitrogen Balance in Spotted Deer (Cervus nippon) fed Forest by-product Silage, Arrowroot (Pueraria thunvegiana) Silage and Oak Browse (Quercus aliena) Hay (꽃사슴에 있어서 육림부산물 사일리지, 칡 사일리지 및 갈잎건초 급여에 따른 건물채식량, 소화율 및 질소출납의 비교)

  • Jeon, B.T.;Kim, Y.H.;Lee, S.M.;Kim, K.H.;Moon, S.H.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.87-94
    • /
    • 2002
  • A comparison of intake, digestibility and nitrogen balance in spotted deer(Cervus nippon) fed forest by-product silage(FBS), arrowroot silage(ARS) and oak leaf hay(OLH) was made to examine the feeding value of forest by-product silage. Dry matter digestibility of ARS was significantly higher(p$<$0.05) than that of OLH while crude protein digestibility was significantly higher(p$<$0.05) in ARS and FBS than in OLH. The digestibility of crude fiber was highest in FBS. Dry matter intake of OLH was significantly higher(p$<$0.05) than that of ARS, and there was no significant difference with FBS. Nitrogen intake was higher in OLH and ARS than in FBS, but there was no significant difference. Fecal nitrogen was highest(p$<$0.05) in OLH and urinary nitrogen was highest(p$<$0.05) in ARS. Retained nitrogen was highest in FBS, however, there was no significant difference among treatments. In Conclusion. FBS was estimated as a useful roughage source for deer, showing high digestibility, dry matter intake and nitrogen utilization.

Metabolisable Energy, In situ Rumen Degradation and In vitro Fermentation Characteristics of Linted Cottonseed Hulls, Delinted Cottonseed Hulls and Cottonseed Linter Residue

  • Bo, Y.K.;Yang, H.J.;Wang, W.X.;Liu, H.;Wang, G.Q.;Yu, X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.2
    • /
    • pp.240-247
    • /
    • 2012
  • Dietary supplementation with conventional linted cottonseed hulls (LCSH) is a common practice in livestock production all over the world. However, supplementation with mechanically delinted cottonseed hulls (DCSH) and cottonseed linter residue (CLR) is uncommon. Cottonseed by-products, including LCSH, DCSH and CLR, were assessed by chemical analysis, an in situ nylon bag technique, an in vitro cumulative gas production technique and in vitro enzyme procedure. The crude protein (CP) content of CLR (302 g/kg dry matter (DM)) was approximately 3 times that of LCSH and 5 times that of DCSH. The crude fat content was approximately 3 times higher in CLR (269 g/kg DM) than in LCSH and 4 times higher than in DCSH. Neutral detergent fibre (311 g/kg DM) and acid detergent fibre (243 g/kg DM) contents of CLR were less than half those of DCSH or LCSH. Metabolisable energy, estimated by in vitro gas production and chemical analyses, ranked as follows: CLR (12.69 kJ/kg DM)>LCSH (7.32 kJ/kg DM)>DCSH (5.82 kJ/kg DM). The in situ degradation trial showed that the highest values of effective degradability of DM and CP were obtained for CLR (p<0.05). The in vitro disappearance of ruminal DM ranked as follows: CLR>LCSH>DCSH (p<0.05). The lowest digestibility was observed for DCSH with a two-step in vitro digestion procedure (p<0.05). The potential gas production in the batch cultures did not differ for any of the three cottonseed by-product feeds. The highest concentration of total volatile fatty acids was observed in CLR after a 72 h incubation (p<0.05). The molar portions of methane were similar between all three treatments, with an average gas production of 22% (molar). The CLR contained a higher level of CP than did LCSH and DCSH, and CLR fermentation produced more propionate. The DCSH and LCSH had more NDF and ADF, which fermented into greater amounts of acetate.

Influence of Ruminally Protected Fat and Urea Treated Corncobs Ensiled with or without Corn Steep Liquor on Nutrient Intake, Digestibility, Milk Yield and Its Composition in Nili-Ravi Buffaloes

  • Sarwar, M.;Khan, M. Ajmal;Un-Nisa, Mahr
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.1
    • /
    • pp.86-93
    • /
    • 2004
  • Sixteen early lactating Nili-Ravi buffaloes, four animals in each group, were used in a Completely Randomized Design to evaluate the effect of varying levels of both ruminally protected fat and urea treated corncobs ensiled with or without corn steep liquor (CSL) on feed intake, digestibility and milk production and its composition. Four experimental diets were formulated. The control (C) diet was balanced to contain 0% fat and 35% urea treated corncobs ensiled with 0% CSL. The low fat (LF), medium fat (MF) and high fat (HF) diets had 45, 55 and 65% urea treated corncobs ensiled with 9% CSL and 2, 4 and 6% ruminally protected fat, respectively. Dry matter, crude protein (CP) and neutral detergent fiber (NDF) intakes by buffaloes remained similar across all treatments. However, DM and NDF as a percent of body weight and digestible DM intakes were higher in HF diet when compared to C, LF and MF diets. Digestible NDF intakes were also significantly higher in HF diet as compared to all other diets. The intakes of ADF and digestible ADF were higher in MF and HF than C and LF diets. The significant variation in digestible DM, ADF and NDF intakes may be attributed to the ammoniation of corncobs along with CSL that caused significant changes in the degradability and digestibility of the diets. Ether extract and digestible EE intakes differed significantly (p<0.05) among all treatments. Intakes of EE were the highest in animals fed HF diet, which was because of added fat. Apparent DM digestibility was the highest in animals C diet and was the lowest in those fed LF diet. Neutral detergent fiber and ADF digestibilities were higher in animals fed diets containing urea treated corncobs ensiled with 9% CSL when compared to those fed diets containing urea treated corncobs ensiled without CSL. Apparent digestibility of CP was noted highest (71.47%) in animals fed HF diet when compared to those fed MF (67.75%), LF (67.04%) and C (65.39%) diets. Milk yield (4% FCM) was the higher in buffaloes fed HF, MF and LF diets than those fed C diet. These results indicated that increasing levels both of fat and urea treated corncobs ensiled with CSL elevated the negative effects of poor quality fibrous feed on milk production by buffaloes.

Molecular Cloning and Expression of a Novel Protease-resistant GH-36 $\alpha$-Galactosidase from Rhizopus sp. F78 ACCC 30795

  • Yanan, Cao;Wang, Yaru;Luo, Huiying;Shi, Pengjun;Meng, Kun;Zhou, Zhigang;Zhang, Zhifang;Yao, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1295-1300
    • /
    • 2009
  • A 2,172-bp full-length gene (aga-F78), encoding a protease-resistant $\alpha$-galactosidase, was cloned from Rhizopus sp. F78 and expressed in Escherichia coli. The deduced amino acid sequence shared highest identity (45.0%) with an $\alpha$-galactosidase of glycoside hydrolase family 36 from Absidia corymbifera. After one-step purification with a Ni-NTA chelating column, the recombinant Aga-F78 migrated as a single band of ~82 and ~210 kDa on SDS-PAGE and nondenaturing gradient PAGE, respectively, indicating that the native structure of the recombinant Aga-F78 was a trimer. Exhibiting the similar properties as the authentic protein, purified recombinant Aga-F78 was optimally active at $50^{\circ}C$ and pH 4.8, highly pH stable over the pH range 5.0-10.0, more resistant to some cations and proteases, and had wide substrate specificity (pNPG, melidiose, raffinose, and stachyose). The recombinant enzyme also showed good hydrolytic ability to soybean meal, releasing galactose of $415.58\;{\mu}g/g$ soybean meal. When combined with trypsin, the enzyme retained over 90% degradability to soybean meal. These favorable properties make Aga-F78 a potential candidate for applications in the food and feed industries.

Evaluations of Nutrient Compositions and In Situ Ruminal Disappearance Rates of Roughage Sources Commonly Used in Korea (국내 이용 주요 조사료원의 영양소 함량 및 반추위 In situ 소실율 평가)

  • Na, Young Jun;Lee, Kyung Won;Hong, Kyung Hee;Lim, Jong Soo;Kim, Myeong Hwa;Kim, Kyeong Hoon;Lee, Sang Rak
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.4
    • /
    • pp.269-274
    • /
    • 2013
  • This study is conducted to estimate the nutrient compositions and in-situ ruminal disappearancerates of roughage sources which are commonly used in South Korea. Twelve types of roughage sources are being selected based on surveys from more than 50 farms, and 12 samples from various farms and companies are collected and analyzed for their nutritive components and minerals. Two Hanwoo steers (BW $526{\pm}14$ kg) with ruminal cannula are used to investigate in situ ruminal degradability. Five roughage sources, timothy hay, alfalfa pellet, rice straw, klein grass hay and tall fescue straw, are all selected from 12 roughage sources above for further experiments. Overall, the nutrient components and minerals from the 12 roughage sources have shown low values when comparing with standard tables of feed compositions in Korea. In situ dry matter disappearance rate is recorded as high in order of klein grass, timothy, alfalfa pellet, tall fescue and rice straw. In situ crude protein disappearance rate is high in order of alfalfa pellet, klein grass, timothy, tall fescue and rice straw.

Purification and Biochemical Characterization of β-agarase Produced by Marine Microorganism Cellulophga sp. J9-3 (해양미생물 Cellulophga sp. J9-3이 생산하는 베타-아가레이즈의 분리 및 생화학적 특성)

  • Kim, Da Som;Kim, Jong-Hee;Chi, Won-Jae
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.329-336
    • /
    • 2021
  • Cellulophga sp. J9-3, is a gram-negative, aerobic marine bacterium belonging to the family Flavobacteriaceae. In addition to cellulose degradability, the J9-3 strain is also capable of hydrolyzing agar in the solid and liquid medium, and the production of agarase in the presence of agarose can be remarkably induced by the bacterium. From the cell culture broth of Cellulophga sp. J9-3, ammonium sulfate precipitation and three kinds of column chromatography were successively performed to purify a specific agarase protein, the AgaJ93. Purified AgaJ93 showed the strongest hydrolyzing activity towards agarose (approximately 22%), and even displayed activity towards starch. AgaJ93 hydrolyzed agarose into neoagarotetraose and neoagarohexaose via various oligosaccharide intermediates, indicating that AgaJ93 is an endo-type β-agarase. AgaJ93 showed maximum activity at a pH of 7.0 and temperature of 35 ℃. Its activity increased by more than six times in the presence of Co2+ ions. The N-terminal sequence of AgaJ93 showed 82% homology with the heat-resistant endo-type β-agarase Aga2 of Cellulophaga sp. W5C. However, the biochemical properties of the two enzymes were different. Therefore, AgaJ93 is expected to be a novel agarose, different from the previously reported β-agarases.