• 제목/요약/키워드: Protein Acetylation

검색결과 82건 처리시간 0.024초

Analysis of TIMP-2 and Vimentin Protein Expression and Epigenetic Reprogramming in Cloned Bovine Placentae

  • Kim, Hong-Rye;Han, Rong-Xun;Lee, Hye-Ran;Yoon, Jong-Taek;Cheong, Hee-Tae;Park, Chang-Sik;Jin, Dong-Il
    • Reproductive and Developmental Biology
    • /
    • 제31권2호
    • /
    • pp.97-102
    • /
    • 2007
  • The objective of this study was to analyzed pattern of proteins expression abnormally in cloned bovine placenta. TIMP-2 protein whose function is related to extracellular matrix degradation and tissue remodeling processes was one of differentially up-regulated proteins in SCNT placenta. And one of down-regulated protein in SCNT placenta was identified as vimentin protein that is presumed to stabilize the architecture of the cytoplasm. The expression patterns of these proteins were validated by Western blotting. To evaluate how regulatory loci. of TIMP-2 and vimentin genes was programmed reprogramming in cloned placenta. the status of DNA methylation in the promoter region of TIMP-2 and vimentin genes was analyzed by sodium Bisulfite mapping. The DNA methylation results showed that there was not difference in methylation pattern of TIMP-2 and vimentin loci between cloned and normal placenta. Histone H3 acetylation state of the nucleosome was analyzed in the cloned placental and normal placenta by Western blotting. A small portion of the protein lysates were subjected to Western blotting with the antibodies against anti acetyl-Histone H3. Overall histone H3 acetylation state of SCNT placenta was significantly higher than those of normal placenta cells. It is postulated that cloned placenta at the end of gestation seems to be unusual in function and morphology of placenta via improper expression of TIMP-2 and vimentin by abnormal acetylation states of cloned genome.

Dimethylglutarylation에 의한 변형대두단백질의 기능적 특성 (Functional Properties of Modified Soybean Protein Isolate by Dimethylglutarylation)

  • 최원균;정철원
    • 한국식생활문화학회지
    • /
    • 제14권5호
    • /
    • pp.477-485
    • /
    • 1999
  • This study was conducted to improve the functional properties of soybean protein isolate by dimethylglutarylation and acetylation. Amino acid composition and solubility of modified soybean protein by dimethylglutarylation were not changed, but lysine and trypsin inhibitor activity was decreased an isoelectric point was moved from pH5 to pH4 as a result of modification. Emulsification capacity and stability, foaming capacity and thermal stability were increased by the modification. In that 91% dimethylglutarylated protein did not coagulate when heating at $100^{\circ}C$ for 20 min. while its foaming stability was decreased. Whereas specific gravity was decreased by the modification of the soybean protein, relative viscosity and whiteness were improved. Generally, dimethylglutarylation produced more conformational changes in protein system than did in acetylation.

  • PDF

Microtubule Acetylation-Specific Inhibitors Induce Cell Death and Mitotic Arrest via JNK/AP-1 Activation in Triple-Negative Breast Cancer Cells

  • Suyeon Ahn;Ahreum Kwon;Youngsoo Oh;Sangmyung Rhee;Woo Keun Song
    • Molecules and Cells
    • /
    • 제46권6호
    • /
    • pp.387-398
    • /
    • 2023
  • Microtubule acetylation has been proposed as a marker of highly heterogeneous and aggressive triple-negative breast cancer (TNBC). The novel microtubule acetylation inhibitors GM-90257 and GM-90631 (GM compounds) cause TNBC cancer cell death but the underlying mechanisms are currently unknown. In this study, we demonstrated that GM compounds function as anti-TNBC agents through activation of the JNK/AP-1 pathway. RNA-seq and biochemical analyses of GM compound-treated cells revealed that c-Jun N-terminal kinase (JNK) and members of its downstream signaling pathway are potential targets for GM compounds. Mechanistically, JNK activation by GM compounds induced an increase in c-Jun phosphorylation and c-Fos protein levels, thereby activating the activator protein-1 (AP-1) transcription factor. Notably, direct suppression of JNK with a pharmacological inhibitor alleviated Bcl2 reduction and cell death caused by GM compounds. TNBC cell death and mitotic arrest were induced by GM compounds through AP-1 activation in vitro. These results were reproduced in vivo, validating the significance of microtubule acetylation/JNK/AP-1 axis activation in the anti-cancer activity of GM compounds. Moreover, GM compounds significantly attenuated tumor growth, metastasis, and cancer-related death in mice, demonstrating strong potential as therapeutic agents for TNBC.

Free fatty acid-induced histone acetyltransferase activity accelerates lipid accumulation in HepG2 cells

  • Chung, Sangwon;Hwang, Jin-Taek;Park, Jae Ho;Choi, Hyo-Kyoung
    • Nutrition Research and Practice
    • /
    • 제13권3호
    • /
    • pp.196-204
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disease triggered by epigenetic alterations, including lysine acetylation at histone or non-histone proteins, affecting the stability or transcription of lipogenic genes. Although various natural dietary compounds have anti-lipogenic effects, their effects on the acetylation status and lipid metabolism in the liver have not been thoroughly investigated. MATERIALS/METHODS: Following oleic-palmitic acid (OPA)-induced lipid accumulation in HepG2 cells, the acetylation status of histone and non-histone proteins, HAT activity, and mRNA expression of representative lipogenic genes, including $PPAR{\gamma}$, SREBP-1c, ACLY, and FASN, were evaluated. Furthermore, correlations between lipid accumulation and HAT activity for 22 representative natural food extracts (NExs) were evaluated. RESULTS: Non-histone protein acetylation increased following OPA treatment and the acetylation of histones H3K9, H4K8, and H4K16 was accelerated, accompanied by an increase in HAT activity. OPA-induced increases in the mRNA expression of lipogenic genes were down-regulated by C-646, a p300/CBP-specific inhibitor. Finally, we detected a positive correlation between HAT activity and lipid accumulation (Pearson's correlation coefficient = 0.604) using 22 NExs. CONCLUSIONS: Our results suggest that NExs have novel applications as nutraceutical agents with HAT inhibitor activity for the prevention and treatment of NAFLD.

Sulfanilamide유도체의 동(II)착화합물에 대한 생물약제학적 연구 (Biopharmaceutical studies on copper(II) chelates of sulfanilamide derivatives)

  • 김재백
    • 약학회지
    • /
    • 제15권2호
    • /
    • pp.41-52
    • /
    • 1971
  • Cu(II) chelates of several sulfanilamide derivatives (Sulfa-Cu) were prepared and their effects on solubility, absorptivity in intestinal lumen, biding tendency with serum protein and erythrocytes, concentration in rabbit blood, and acetylation rate were studied in comparison with their free ligand forms. For solubility concerned, the partition coefficients of Sulfa-Cu are decreased as following order: Sulfadimethoxine Copper chelate (SDM-Cu), Sulfamethoxypyridazine Copper chelate (SD-Cu), Sulfamerazine Copper chelate (SM-Cu), Sulfaisoxazole Copper chelate (SIX-Cu). The partition coefficients of SDM-Cu and ST-Cu were much greater than those of ligands. this phenomenone acounts for the rapid absorption of SDM-Cu and ST-Cu in the rat small intestine (in situ). The Sulfa-Cu were absorbed at the intestinal lumen of a rat in the rate of first order and there was no difference between long acting sulfa drugs and their Cu0chelates in biological half lives. In binding experiments, sulfa-Cu binded with serum protein in lower ratio than their ligands except SIX-Cu. On other hand, acetylation rates of sulfa-Cu were higher than those of free sulfa drugs and the acetylation rate were higher than those of free sulfa drugs and powder. In a experiment on Sulfa-Cu concentration in rabbit blood, the half lives of SD-Cu, SIX-cu, ST-Cu, and SM-Cu were longer than those of their ligands. Above all, the half life of SD-Cu appeared to be approximately 3.5 times logner than that of corresponding ligand, SD. When absorption of sulfa drugs or sulfa-Cu at the small intestinal lumen of a rat and the concentration in rabbit blood after absorption were compared, it was found that there was not always conrrelated.

  • PDF

아세틸화가 Glycinin의 구조에 미치는 영향 (Effect of Acetylation on Conformation of Glycinin)

  • 김강성;이준식
    • 한국식품과학회지
    • /
    • 제21권5호
    • /
    • pp.714-720
    • /
    • 1989
  • 콩의 주요 저장 단백질인 glycinin의 라이신 잔기를 적당량의 acetic anhydride를 이용하여 28, 65, 85, 95%로 아세틸화시켰다. 아세틸화에 의한 구조적 변화를 solvent perturbant 방법으로 측정한 결과 자연상태의 단백질에 있어서는 타이로신 잔기의 약 40% 미만이 단백질 표면에 노출되어 있었으나 85% 아세틸화 glycinin에 있어서는 70% 이상이 표면에 노출되어 용매에 대해 접근이 용이하게 되었다. 이와 같은 현상은 second derivative spectroscopy에 의해 서로 동일하게 나타났으며, 따라서 아세틸화에 의해 타이로신과 같은 소수성 아미노산이 단백질 표면으로 이동하여 단백질 구조가 변형되었음을 알 수 있었다. 한편 near UV circular dichriosim의 결과 자연상태의 glycinin과 아세틸화가 일어난 glycinin 모두 유사한 모양의 spectra를 나타내었으나 95% 아세틸화 glycinin의 경우에는 tryptophan의 영향이 두드러졌다. Specific viscosity의 경우 아세틸화가 일어날수록 급격히 증가하였는데 이는 아세틸화에 의해 구형의 glycinin이 변형되어 분자의 부피가 커졌을 뿐 아니라 subunit의 분리에 의해 입자수가 증가했기 때문이다.

  • PDF

Sodium butyrate inhibits high glucose-induced inflammation by controlling the acetylation of NF-κB p65 in human monocytes

  • Ha-Rin Moon;Jung-Mi Yun
    • Nutrition Research and Practice
    • /
    • 제17권1호
    • /
    • pp.164-173
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Hyperglycemia is a major cause of diabetes and diabetesrelated diseases. Sodium butyrate (NaB) is a short-chain fatty acid derivative that produces dietary fiber by anaerobic bacterial fermentation in the large intestine and occurs in foods, such as Parmesan cheese and butter. Butyrate has been shown to prevent obesity, improve insulin sensitivity, and ameliorate dyslipidemia in diet-induced obese mice. Therefore, this study examined the effects and mechanism of NaB on the secretion of inflammatory cytokines induced by high glucose (HG) in THP-1 cells. MATERIALS/METHODS: THP-1 cells were used as an in vitro model for HG-induced inflammation. The cells were cultured under normal glycemic or hyperglycemic conditions with or without NaB (0-25 μM). Western blotting and quantitative polymerase chain reaction were used to evaluate the protein and mRNA levels of nuclear factor-κB (NF-κB), interleukin-6, tumor necrosis factor-α, acetylated p65, acetyl CREB-binding protein/p300 (CBP/p300), and p300 using THP-1 cells. Histone acetyltransferase (HAT), histone deacetylase (HDAC), and pro-inflammatory cytokine secretion activity were analyzed using an enzyme-linked immunosorbent assay. RESULTS: HG significantly upregulated histone acetylation, acetylation levels of p300, NF-κB activation, and inflammatory cytokine release in THP-1 cells. Conversely, the NaB treatment reduced cytokine release and NF-κB activation in HG-treated cells. It also significantly reduced p65 acetylation, CBP/p300 HAT activity, and CBP/p300 gene expression. In addition, NaB decreased the interaction of p300 in acetylated NF-κB and TNF-α. CONCLUSIONS: These results suggest that NaB suppresses HG-induced inflammatory cytokine production through HAT/HDAC regulation in monocytes. NaB has the potential for preventing and treating diabetes and its related complications.

The Diversity of Lysine-Acetylated Proteins in Escherichia coli

  • Yu, Byung-Jo;Kim, Jung-Ae;Moon, Jeong-Hee;Ryu, Seong-Eon;Pan, Jae-Gu
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권9호
    • /
    • pp.1529-1536
    • /
    • 2008
  • Acetylation of lysine residues in proteins is a reversible and highly regulated posttranslational modification. However, it has not been systematically studied in prokaryotes. By affinity immunoseparation using an anti-acetyllysine antibody together with nano-HPLC/MS/MS, we identified 125 lysine-acetylated sites in 85 proteins among proteins derived from Escherichia coli. The lysine-acetylated proteins identified are involved in diverse cellular functions including protein synthesis, carbohydrate metabolism, the TCA cycle, nucleotide and amino acid metabolism, chaperones, and transcription. Interestingly, we found a higher level of acetylation during the stationary phase than in the exponential phase; proteins acetylated during the stationary phase were immediately deacetylated when the cells were transferred to fresh LB culture medium. These results demonstrate that lysine acetylation is abundant in E. coli and might be involved in modifying or regulating the activities of various enzymes involved in critical metabolic processes and the synthesis of building blocks in response to environmental changes.

피마자 단백질의 식품화를 위한 연구 (Studies on the Preparation of Food Proteins from Castor Bean Protein)

  • 윤주억
    • 한국식품과학회지
    • /
    • 제12권4호
    • /
    • pp.263-271
    • /
    • 1980
  • 피마자박 단백질을 사료 또는 식품화 하기 위하여 탈지 피마자박으로부터 독성분이 완전하게 제거된 단백질을 만들었다. 이 피마자 단백질의 용해도는 ${\varepsilon}$-아미노기의 숙시닐화 및 아세틸화로 $pH\;7{\sim}8$에서 현저하게 증가하였다. 아미노산 분석결과, 황-함유 아미노산과 L-리신이 제한 아미노산이었고, 아실화 과정은 아미노산 함량에 약간의 손실을 주었다. 파파인을 이용한 1 단계법 plastein 반응으로 피마자 단백질 또는 아실화 피마자 단백질과 DL-메티오닌 에틸 에스테르로부터 L-메티오닌 강화 피마자 단백질을 합성하였고, 이 방법으로 L-메티오닌 도입율은 50%였다. 피마자 단백질 및 수식된 피마자 단백질의 펩신에 의한 소화율은 모두 92% 정도였으나, 트립신에 의한 소화율은 숙시닐화 및 아세틸화 단백질이 현저하게 떨어져서 각각 42% 및 26%였다. 피마자 단백질의 단백질 효율은 L-메티오닌 강화로 카제인의 단백질 효율의 90%까지 향상되었으나, 피마자 단백질을 숙시닐화 및 아세틸화 하면 단백질 효율은 감소되어, 각각 카제인의 55% 및 69%였다.

  • PDF

Non-histone protein HMGB1 inhibits the repair of damaged DNA by cisplatin in NIH-3T3 murine fibroblasts

  • Yusein-Myashkova, Shazie;Ugrinova, Iva;Pasheva, Evdokia
    • BMB Reports
    • /
    • 제49권2호
    • /
    • pp.99-104
    • /
    • 2016
  • The nuclear non-histone protein high mobility group box (HMGB) 1 is known to having an inhibitory effect on the repair of DNA damaged by the antitumor drug cisplatin in vitro. To investigate the role of HMGB1 in living cells, we studied the DNA repair of cisplatin damages in mouse fibroblast cell line, NIH-3T3. We evaluated the effect of the post-synthetic acetylation and C-terminal domain of the protein by overexpression of the parental and mutant GFP fused forms of HMGB1. The results revealed that HMGB1 had also an inhibitory effect on the repair of cisplatin damaged DNA in vivo. The silencing of HMGB1 in NIH-3T3 cells increased the cellular DNA repair potential. The increased levels of repair synthesis could be "rescued" and returned to less than normal levels if the knockdown cells were transfected with plasmids encoding HMGB1 and HMGB1 K2A. In this case, the truncated form of HMGB1 also exhibited a slight inhibitory effect.