• 제목/요약/키워드: Protein Acetylation

검색결과 82건 처리시간 0.031초

Purification and Acetylation of Protein X Subunit of Pyruvate Dehydrogenase Complex (PDC) from Bovine Kidney

  • Ryu, Ryu;Song, Byoung-J.;Hong, Sung-Youl;Huh, Jae-Wook
    • Archives of Pharmacal Research
    • /
    • 제19권6호
    • /
    • pp.502-506
    • /
    • 1996
  • Protein X is one of the subunits of pyruvate dehydrogenase complex. The biological role of this protein has not been fully elucidated, mainly because of the difficulty in its dissociation from the tightly bound dihydrolipoamide acetyltransferase-protein X subcomplex. We have found that the detachment of protein X from acetyltransferase subunit can be easily accomplished by the cycles of freezing and thawing proces. Several lines of evidence including sodium dodecyl sulfate-polyacrylamide gel electrophoresis, N-terminal amino acid sequence analysis and acetylation with $[2^{14}C]$ pyruvate confirmed that the purified protein is protein X. The purified intact form of protein X was acetylated by $[2^{14}C]$ pyruvate in the presence of py-ruvate dehydrogenase subunit.The acetylation efficiency of this protein was lower than that of acetyltransferase and was not affected by the presence of acetyltransferase.

  • PDF

Histone acetyltransferase inhibitors antagonize AMP-activated protein kinase in postmortem glycolysis

  • Li, Qiong;Li, Zhongwen;Lou, Aihua;Wang, Zhenyu;Zhang, Dequan;Shen, Qingwu W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권6호
    • /
    • pp.857-864
    • /
    • 2017
  • Objective: The purpose of this study was to investigate the influence of AMP-activated protein kinase (AMPK) activation on protein acetylation and glycolysis in postmortem muscle to better understand the mechanism by which AMPK regulates postmortem glycolysis and meat quality. Methods: A total of 32 mice were randomly assigned to four groups and intraperitoneally injected with 5-Aminoimidazole-4-carboxamide1-${\beta}$-D-ribofuranoside (AICAR, a specific activator of AMPK), AICAR and histone acetyltransferase inhibitor II, or AICAR, Trichostatin A (TSA, an inhibitor of histone deacetylase I and II) and Nicotinamide (NAM, an inhibitor of the Sirt family deacetylases). After mice were euthanized, the Longissimus dorsi muscle was collected at 0 h, 45 min, and 24 h postmortem. AMPK activity, protein acetylation and glycolysis in postmortem muscle were measured. Results: Activation of AMPK by AICAR significantly increased glycolysis in postmortem muscle. At the same time, it increased the total acetylated proteins in muscle 45 min postmortem. Inhibition of protein acetylation by histone acetyltransferase inhibitors reduced AMPK activation induced increase in the total acetylated proteins and glycolytic rate in muscle early postmortem, while histone deacetylase inhibitors further promoted protein acetylation and glycolysis. Several bands of proteins were detected to be differentially acetylated in muscle with different glycolytic rates. Conclusion: Protein acetylation plays an important regulatory role in postmortem glycolysis. As AMPK mediates the effects of pre-slaughter stress on postmortem glycolysis, protein acetylation is likely a mechanism by which antemortem stress influenced postmortem metabolism and meat quality though the exact mechanism is to be elucidated.

명태 근육단백질의 아세틸화에 따른 기능성의 변화 (Acetylation of Fist Protein form Alaska Pollack)

  • 홍정화;최진호;변대석
    • 한국식품영양과학회지
    • /
    • 제19권3호
    • /
    • pp.219-223
    • /
    • 1990
  • Myofibrillar protein from Alaska pollack was modified with acetic anhydride at pH 7.5 and $25^{\circ}C$ and changes in functional properties as affected by the degree of modification were determined. Acetylation of myofibrillar protein resulted in protein with unique functional properties dependent upon the degree of acetylation. By selecting appropriate degree of modification it was possible to control protein solubility heat coagulability calcium precipitability foaming and emulsion capa-city.

  • PDF

Changes in Physicochemical Properties of Soybean Protein due to Acetylation during Incubation with Glucose

  • Kim, Myung-Hee;Kim, Jin-Hee;Kim, Kang-Sung
    • 한국환경보건학회지
    • /
    • 제30권4호
    • /
    • pp.308-313
    • /
    • 2004
  • Native and acetylated soybean protein with acetylation percentage of $25\%$ were incubated with glucose to induce Maillard reaction. Acetylation of ${\varepsilon}$-amino group of lysine residues changed the conformation of soybean protein. The direct uv spectrum of native and acetylated soybean protein showed conformational changes with accessibility of tyrosine and tryptophan residues increased. Acetylation suppressed Maillard reaction between soybean protein and glucose. Acetylated soybean protein showed improved water sorption, fat binding, foam formation, and emulsion activity of the protein, but depressed brown pigment development and trypsin digestion. Thus aceylation prevented deterioration of certain functional characteristics that occurred during storage, besides causing functional characteristics to be improved on its own.

Acetylation of Retinoblastoma Like Protein2 (Rb2/p130) in Tumor Tissues

  • Khan, Z.N.;Sabir, M.;Kayani, M.A.;Saeed, M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권4호
    • /
    • pp.2255-2258
    • /
    • 2013
  • The activity of Rb proteins is controlled by post-translational modifications, especially through phosphorylation. Acetylation of Rb2/p130 was reported recently in NIH3T3 cells but its physiological relevance in cell cycle control and tumorigenesis is still unknown. Efforts are underway to investigate possible interplay between Rb2/p130 phosphorylation and acetylation. Here we hypothesized that Rb2/p130 acetylation, like p53 acetylation, may play a role in development of the tumor phenotype. The proposed hypothesis regarding acetylation of Rb2/p130 in tumor VS normal cells was found to be true in our case study of 36 tumor samples. Statistical analysis of results suggest strong correlation among Rb2/p130 acetylation and cancer phenotype.

Effects of Proto-oncogene Protein DEK on PCAF Localization

  • Lee, In-Seon;Lee, Seok-Cheol;Lee, Jae-Hwi;Seo, Sang-Beom
    • Biomolecules & Therapeutics
    • /
    • 제15권2호
    • /
    • pp.78-82
    • /
    • 2007
  • The proto-oncogene protein DEK is a nuclear binding phosphoprotein that has been associated with various human diseases including leukemia. Histone acetylation is an important post-translational modification which plays important role in transcriptional regulation. Auto-acetylation of histone acetyltransferase PCAF results in increment of its HAT activity and facilitation of its nuclear localization. In this study, we report that DEK inhibits PCAF auto-acetylation through direct interaction. The C-terminal acidic domains of DEK are responsible for the interaction with PCAF. Using confocal microscopy, we have shown that nuclear localization of PCAF is severely inhibited by DEK. Taken together, our results suggest that DEK may be involved in various cellular signal transduction pathways accommodated by PCAF through the regulation of PCAF auto-acetylation.

인산화와 초산화가 대두단백질의 기능특성과 구조에 미치는 영향 (Effects of Phosphorylation and Acetylation on Functional Properties and Structure of Soy Protein)

  • 김남수;권대영;남영중
    • 한국식품과학회지
    • /
    • 제20권5호
    • /
    • pp.625-630
    • /
    • 1988
  • 대두단백질을 인산화 및 초산화처리에 의하여 변형시키고, 변형대두단백질의 기능특성을 검토하였다. 인산화 대두단백질은 비변형 대두단백질보다 높은, 용해도, 거품특성, 수분보유력을 나타냈다. 한편, 초산화에 의해서도 유화력과 거품특성이 현저하게 증진되었다. 대두단백질은 인산화와 초산화에 의하여 등전점이 산성쪽으로 변화였으며 단백질의 집괴화현상도 관찰되었다. 또한, 화학변형된 대두단백질을 디스크 전기영동에 의해 분석시 단백질밴드의 상대이동도가 현저하게 증대되었다.

  • PDF

N-Terminal Acetylation-Targeted N-End Rule Proteolytic System: The Ac/N-End Rule Pathway

  • Lee, Kang-Eun;Heo, Ji-Eun;Kim, Jeong-Mok;Hwang, Cheol-Sang
    • Molecules and Cells
    • /
    • 제39권3호
    • /
    • pp.169-178
    • /
    • 2016
  • Although $N{\alpha}$-terminal acetylation (Nt-acetylation) is a pervasive protein modification in eukaryotes, its general functions in a majority of proteins are poorly understood. In 2010, it was discovered that Nt-acetylation creates a specific protein degradation signal that is targeted by a new class of the N-end rule proteolytic system, called the Ac/N-end rule pathway. Here, we review recent advances in our understanding of the mechanism and biological functions of the Ac/N-end rule pathway, and its crosstalk with the Arg/N-end rule pathway (the classical N-end rule pathway).

플루란 아세테이트 미립구를 이용한 단백질 전달 시스템 개발 (Development of Protein Delivery System using Pullulan Acetate Microspheres (PAM))

  • 나건;최후균
    • Journal of Pharmaceutical Investigation
    • /
    • 제36권2호
    • /
    • pp.115-121
    • /
    • 2006
  • The aim of this study was to develop new protein/peptide depot system instead of poly(DL-lactic acid-coglycolic acid) (PLGA) microspheres. Pullulan was chemically modified by the addition of acetic anhydride (pullulan acetate; PA) and then investigated as new depot system for protein/peptide delivery. PA microspheres (PAM) with lysozyme as a model protein were prepared by w/o/w double emulsion method. The microspheres had a mean size of 10-50 mm with a spherical shape. The size distributions reduced with increasing the degree of acetylation. The loading efficiency of lysozyme was also increased. Lysozyme aggregation behavior in the microsphere was monitored to estimate the change of protein stability during preparation step. The ratios of protein aggregation in PAMs are lower than that of PLGA microsphere, in particular, PA 5 showed lowest as about 16%. The result indicated that the increase of acetylation suppressed the aggregation of protein. The release profiles of lysozyme from PAMs were significantly different. High acetylation effectively improved lysozyme release kinetics by reducing initial burst release and extending continuous release over a period of time. To check the effect of preservation for structural stability of lysozyme, the activity of lysozyme released from PA 5 was also observed. The activity of lysozyme was maintained almost 100% for 25 day. Therefore, PAM may become to a useful carrier for delivery of protein/peptide drugs, if it will be supported by biocompatibility and biodegradability results.

Acetylation of Sarcoplasmic and Myofibrillar Proteins were Associated with Ovine Meat Quality Attributes at Early Postmortem

  • Zhang, Yejun;Li, Xin;Zhang, Dequan;Ren, Chi;Bai, Yuqiang;Ijaz, Muawuz;Wang, Xu;Zhao, Yingxin
    • 한국축산식품학회지
    • /
    • 제41권4호
    • /
    • pp.650-663
    • /
    • 2021
  • The objective of this study was to examine the relationship between meat quality attributes and the changes of sarcoplasmic protein acetylation and myofibrillar protein acetylation in lamb longissimus thoracis et lumborum muscles at different postmortem phases. Protein acetylation, color, pH, shear force, myofibril fragmentation index and cooking loss were measured. The total level of acetylated sarcoplasmic proteins showed a negative relation with pH, a positive relation with a*, b* and cooking loss at the pre-rigor phase. Sarcoplasmic proteins acetylation affected postmortem pH by regulating glycolysis, which in turn affects color and cooking loss. The total level of acetylated myofibrillar proteins showed a positive relation with shear force at the pre-rigor phase. Myofibrillar proteins acetylation affected meat tenderness by regulating muscle contraction. This study indicated that acetylation played a regulatory role of meat color, water-holding capacity, and tenderization process at early postmortem.