DOI QR코드

DOI QR Code

N-Terminal Acetylation-Targeted N-End Rule Proteolytic System: The Ac/N-End Rule Pathway

  • Lee, Kang-Eun (Department of Life Sciences, Pohang University of Science and Technology) ;
  • Heo, Ji-Eun (Department of Life Sciences, Pohang University of Science and Technology) ;
  • Kim, Jeong-Mok (Department of Life Sciences, Pohang University of Science and Technology) ;
  • Hwang, Cheol-Sang (Department of Life Sciences, Pohang University of Science and Technology)
  • Received : 2015.12.07
  • Accepted : 2016.01.14
  • Published : 2016.03.31

Abstract

Although $N{\alpha}$-terminal acetylation (Nt-acetylation) is a pervasive protein modification in eukaryotes, its general functions in a majority of proteins are poorly understood. In 2010, it was discovered that Nt-acetylation creates a specific protein degradation signal that is targeted by a new class of the N-end rule proteolytic system, called the Ac/N-end rule pathway. Here, we review recent advances in our understanding of the mechanism and biological functions of the Ac/N-end rule pathway, and its crosstalk with the Arg/N-end rule pathway (the classical N-end rule pathway).

Keywords

References

  1. Aksnes, H., Drazic, A., and Arnesen, T. (2015a). (Hyper)tension release by N-terminal acetylation. Trends Biochem. Sci. 40, 422-424. https://doi.org/10.1016/j.tibs.2015.05.003
  2. Aksnes, H., Hole, K., and Arnesen, T. (2015b). Molecular, cellular, and physiological significance of N-terminal acetylation. Int. Rev. Cell Mol. Biol. 316, 267-305. https://doi.org/10.1016/bs.ircmb.2015.01.001
  3. Aksnes, H., Van Damme, P., Goris, M., Starheim, K.K., Marie, M., Stove, S.I., Hoel, C., Kalvik, T.V., Hole, K., Glomnes, N., et al. (2015c). An organellar nalpha-acetyltransferase, naa60, acetylates cytosolic N termini of transmembrane proteins and maintains Golgi integrity. Cell Rep. 10, 1362-1374. https://doi.org/10.1016/j.celrep.2015.01.053
  4. Arnesen, T., Van Damme, P., Polevoda, B., Helsens, K., Evjenth, R., Colaert, N., Varhaug, J.E., Vandekerckhove, J., Lillehaug, J.R., Sherman, F., et al. (2009). Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans. Proc. Natl. Acad. Sci. USA 106, 8157-8162. https://doi.org/10.1073/pnas.0901931106
  5. Arnesen, T., Starheim, K.K., Van Damme, P., Evjenth, R., Dinh, H., Betts, M.J., Ryningen, A., Vandekerckhove, J., Gevaert, K., and Anderson, D. (2010). The chaperone-like protein HYPK acts together with NatA in cotranslational N-terminal acetylation and prevention of Huntingtin aggregation. Mol. Cell. Biol. 30, 1898-1909. https://doi.org/10.1128/MCB.01199-09
  6. Bachmair, A., Finley, D., and Varshavsky, A. (1986). In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179-186. https://doi.org/10.1126/science.3018930
  7. Bagadi, S.A., Prasad, C.P., Srivastava, A., Prashad, R., Gupta, S.D., and Ralhan, R. (2007). Frequent loss of Dab2 protein and infrequent promoter hypermethylation in breast cancer. Breast Cancer Res. Treat. 104, 277-286. https://doi.org/10.1007/s10549-006-9422-6
  8. Behnia, R., Panic, B., Whyte, J.R., and Munro, S. (2004). Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p. Nat. Cell Biol. 6, 405-413. https://doi.org/10.1038/ncb1120
  9. Beltran-Alvarez, P., Tarradas, A., Chiva, C., Perez-Serra, A., Batlle, M., Perez-Villa, F., Schulte, U., Sabido, E., Brugada, R., and Pagans, S. (2014). Identification of N-terminal protein acetylation and arginine methylation of the voltage-gated sodium channel in end-stage heart failure human heart. J. Mol. Cell. Cardiol. 76, 126-129. https://doi.org/10.1016/j.yjmcc.2014.08.014
  10. Bhattacharjee, A., Majumdar, U., Maity, D., Sarkar, T.S., Goswami, A.M., Sahoo, R., and Ghosh, S. (2009). In vivo protein tyrosine nitration in S. cerevisiae: identification of tyrosine-nitrated proteins in mitochondria. Biochem. Biophys. Res. Commun. 388, 612-617. https://doi.org/10.1016/j.bbrc.2009.08.077
  11. Bischof, S., Baerenfaller, K., Wildhaber, T., Troesch, R., Vidi, P.A., Roschitzki, B., Hirsch-Hoffmann, M., Hennig, L., Kessler, F., Gruissem, W., et al. (2011). Plastid proteome assembly without Toc159: photosynthetic protein import and accumulation of Nacetylated plastid precursor proteins. Plant Cell 23, 3911-3928. https://doi.org/10.1105/tpc.111.092882
  12. Bodenstein, J., Sunahara, R.K., and Neubig, R.R. (2007). Nterminal residues control proteasomal degradation of RGS2, RGS4, and RGS5 in human embryonic kidney 293 cells. Mol. Pharmacol. 71, 1040-1050. https://doi.org/10.1124/mol.106.029397
  13. Cha-Molstad, H., Sung, K.S., Hwang, J., Kim, K.A., Yu, J.E., Yoo, Y.D., Jang, J.M., Han, D.H., Molstad, M., Kim, J.G., et al. (2015). Amino-terminal arginylation targets endoplasmic reticulum chaperone BiP for autophagy through p62 binding. Nat. Cell Biol. 17, 917-929. https://doi.org/10.1038/ncb3177
  14. Chen, S., Vetro, J.A., and Chang, Y.H. (2002). The specificity in vivo of two distinct methionine aminopeptidases in Saccharomyces cerevisiae. Arch. Biochem. Biophys. 398, 87-93. https://doi.org/10.1006/abbi.2001.2675
  15. Chen, Y.L., Kuo, M.H., Lin, P.Y., Chuang, W.L., Hsu, C.C., Chu, P.Y., Lee, C.H., Huang, T.H., Leu, Y.W., and Hsiao, S.H. (2013). ENSA expression correlates with attenuated tumor propagation in liver cancer. Biochem. Biophys. Res. Commun. 442, 56-61. https://doi.org/10.1016/j.bbrc.2013.10.165
  16. Ciechanover, A., and Ben-Saadon, R. (2004). N-terminal ubiquitination: more protein substrates join in. Trends Cell Biol. 14, 103-106. https://doi.org/10.1016/j.tcb.2004.01.004
  17. Ciechanover, A., and Kwon, Y.T. (2015). Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp. Mol. Med. 47, e147. https://doi.org/10.1038/emm.2014.117
  18. Dinh, T.V., Bienvenut, W.V., Linster, E., Feldman-Salit, A., Jung, V.A., Meinnel, T., Hell, R., Giglione, C., and Wirtz, M. (2015). Molecular identification and functional characterization of the first Nalpha-acetyltransferase in plastids by global acetylome profiling. Proteomics 15, 2426-2435. https://doi.org/10.1002/pmic.201500025
  19. Ditzel, M., Wilson, R., Tenev, T., Zachariou, A., Paul, A., Deas, E., and Meier, P. (2003). Degradation of DIAP1 by the N-end rule pathway is essential for regulating apoptosis. Nat. Cell Biol. 5, 467-473. https://doi.org/10.1038/ncb984
  20. Doblas, V.G., Amorim-Silva, V., Pose, D., Rosado, A., Esteban, A., Arro, M., Azevedo, H., Bombarely, A., Borsani, O., Valpuesta, V., et al. (2013). The SUD1 gene encodes a putative E3 ubiquitin ligase and is a positive regulator of 3-hydroxy-3-methylglutaryl coenzyme a reductase activity in Arabidopsis. Plant Cell 25, 728-743. https://doi.org/10.1105/tpc.112.108696
  21. Dohmen, R.J. (2015). Starting with a degron: N-terminal formylmethionine of nascent bacterial proteins contributes to their proteolytic control. Microbia Cell 2, 356-359. https://doi.org/10.15698/mic2015.10.235
  22. Dorfel, M.J., and Lyon, G.J. (2015). The biological functions of Naa10 - From amino-terminal acetylation to human disease. Gene 567, 103-131. https://doi.org/10.1016/j.gene.2015.04.085
  23. Dougan, D.A., Micevski, D., and Truscott, K.N. (2012). The N-end rule pathway: from recognition by N-recognins, to destruction by AAA+proteases. Biochim. Biophys. Acta 1823, 83-91. https://doi.org/10.1016/j.bbamcr.2011.07.002
  24. Erickson, S.L., Corpuz, E.O., Maloy, J.P., Fillman, C., Webb, K., Bennett, E.J., and Lykke-Andersen, J. (2015). Competition between decapping complex formation and ubiquitin-mediated proteasomal degradation controls human Dcp2 decapping activity. Mol. Cell. Biol. 35, 2144-2153. https://doi.org/10.1128/MCB.01517-14
  25. Esmailpour, T., Riazifar, H., Liu, L., Donkervoort, S., Huang, V.H., Madaan, S., Shoucri, B.M., Busch, A., Wu, J., Towbin, A., et al. (2014). A splice donor mutation in NAA10 results in the dysregulation of the retinoic acid signalling pathway and causes Lenz microphthalmia syndrome. J. Med. Genet. 51, 185-196. https://doi.org/10.1136/jmedgenet-2013-101660
  26. Ferrandez-Ayela, A., Micol-Ponce, R., Sanchez-Garcia, A.B., Alonso-Peral, M.M., Micol, J.L., and Ponce, M.R. (2013). Mutation of an Arabidopsis NatB N-alpha-terminal acetylation complex component causes pleiotropic developmental defects. PLoS One 8, e80697. https://doi.org/10.1371/journal.pone.0080697
  27. Foresti, O., Ruggiano, A., Hannibal-Bach, H.K., Ejsing, C.S., and Carvalho, P. (2013). Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4. Elife 2, e00953.
  28. Forte, G.M., Pool, M.R., and Stirling, C.J. (2011). N-terminal acetylation inhibits protein targeting to the endoplasmic reticulum. PLoS Biol. 9, e1001073. https://doi.org/10.1371/journal.pbio.1001073
  29. Garrels, J.I., McLaughlin, C.S., Warner, J.R., Futcher, B., Latter, G.I., Kobayashi, R., Schwender, B., Volpe, T., Anderson, D.S., Mesquita- Fuentes, R., et al. (1997). Proteome studies of Saccharomyces cerevisiae: identification and characterization of abundant proteins. Electrophoresis 18, 1347-1360. https://doi.org/10.1002/elps.1150180810
  30. Gautschi, M., Just, S., Mun, A., Ross, S., Rucknagel, P., Dubaquie, Y., Ehrenhofer-Murray, A., and Rospert, S. (2003). The yeast N(alpha)-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides. Mol. Cell. Biol. 23, 7403-7414. https://doi.org/10.1128/MCB.23.20.7403-7414.2003
  31. Ghislain, M., Dohmen, R.J., Levy, F., and Varshavsky, A. (1996). Cdc48p interacts with Ufd3p, a WD repeat protein required for ubiquitin-mediated proteolysis in Saccharomyces cerevisiae. EMBO J. 15, 4884-4899.
  32. Gibbs, D.J. (2015). Emerging functions for N-terminal protein acetylation in plants. Trends Plant Sci. 20, 599-601. https://doi.org/10.1016/j.tplants.2015.08.008
  33. Gibbs, D.J., Lee, S.C., Isa, N.M., Gramuglia, S., Fukao, T., Bassel, G.W., Correia, C.S., Corbineau, F., Theodoulou, F.L., Bailey-Serres, J., et al. (2011). Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 479, 415-418. https://doi.org/10.1038/nature10534
  34. Gibbs, D.J., Bacardit, J., Bachmair, A., and Holdsworth, M.J. (2014). The eukaryotic N-end rule pathway: conserved mechanisms and diverse functions. Trends Cell Biol. 24, 603-611. https://doi.org/10.1016/j.tcb.2014.05.001
  35. Giglione, C., Vallon, O., and Meinnel, T. (2003). Control of protein life-span by N-terminal methionine excision. EMBO J. 22, 13-23. https://doi.org/10.1093/emboj/cdg007
  36. Giglione, C., Fieulaine, S., and Meinnel, T. (2015). N-terminal protein modifications: bringing back into play the ribosome. Biochimie 114, 134-146. https://doi.org/10.1016/j.biochi.2014.11.008
  37. Graveley, B.R., Brooks, A.N., Carlson, J.W., Duff, M.O., Landolin, J.M., Yang, L., Artieri, C.G., van Baren, M.J., Boley, N., Booth, B.W., et al. (2011). The developmental transcriptome of Drosophila melanogaster. Nature 471, 473-479. https://doi.org/10.1038/nature09715
  38. Grimmer, J., Rodiger, A., Hoehenwarter, W., Helm, S., and Baginsky, S. (2014). The RNA-binding protein RNP29 is an unusual Toc159 transport substrate. Front Plant Sci. 5, 258.
  39. Hammerle, M., Bauer, J., Rose, M., Szallies, A., Thumm, M., Dusterhus, S., Mecke, D., Entian, K.D., and Wolf, D.H. (1998). Proteins of newly isolated mutants and the amino-terminal proline are essential for ubiquitin-proteasome-catalyzed catabolite degradation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae. J. Biol. Chem. 273, 25000-25005. https://doi.org/10.1074/jbc.273.39.25000
  40. Hassink, G., Kikkert, M., van Voorden, S., Lee, S.J., Spaapen, R., van Laar, T., Coleman, C.S., Bartee, E., Fruh, K., Chau, V., et al. (2005). TEB4 is a C4HC3 RING finger-containing ubiquitin ligase of the endoplasmic reticulum. Biochem. J. 388, 647-655. https://doi.org/10.1042/BJ20041241
  41. Helbig, A.O., Rosati, S., Pijnappel, P.W., Van Breukelen, B., Timmers, M.H., Mohammed, S., Slijper, M., and Heck, A.J. (2010). Perturbation of the yeast N-acetyltransferase NatB induces elevation of protein phosphorylation levels. BMC Genomics 11, 685. https://doi.org/10.1186/1471-2164-11-685
  42. Hershko, A., Heller, H., Eytan, E., Kaklij, G., and Rose, I.A. (1984). Role of the alpha-amino group of protein in ubiquitin-mediated protein breakdown. Proc. Natl. Acad. Sci. USA 81, 7021-7025. https://doi.org/10.1073/pnas.81.22.7021
  43. Holmes, W.M., Mannakee, B.K., Gutenkunst, R.N., and Serio, T.R. (2014). Loss of amino-terminal acetylation suppresses a prion phenotype by modulating global protein folding. Nat. Commun. 5, 4383. https://doi.org/10.1038/ncomms5383
  44. Hu, R.G., Sheng, J., Qi, X., Xu, Z., Takahashi, T.T., and Varshavsky, A. (2005). The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators. Nature 437, 981-986. https://doi.org/10.1038/nature04027
  45. Hwang, C.S., Shemorry, A., Auerbach, D., and Varshavsky, A. (2010a). The N-end rule pathway is mediated by a complex of the RING-type Ubr1 and HECT-type Ufd4 ubiquitin ligases. Nat. Cell Biol. 12, 1177-1185. https://doi.org/10.1038/ncb2121
  46. Hwang, C.S., Shemorry, A., and Varshavsky, A. (2010b). N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327, 973-977. https://doi.org/10.1126/science.1183147
  47. Hwang, C.S., Sukalo, M., Batygin, O., Addor, M.C., Brunner, H., Aytes, A.P., Mayerle, J., Song, H.K., Varshavsky, A., and Zenker, M. (2011). Ubiquitin ligases of the N-end rule pathway: assessment of mutations in UBR1 that cause the Johanson-Blizzard syndrome. PLoS One 6, e24925. https://doi.org/10.1371/journal.pone.0024925
  48. Jornvall, H. (1975). Acetylation of Protein N-terminal amino groups structural observations on alpha-amino acetylated proteins. J. Theoretic. Biol. 55, 1-12. https://doi.org/10.1016/S0022-5193(75)80105-6
  49. Kalvik, T.V., and Arnesen, T. (2013). Protein N-terminal acetyltransferases in cancer. Oncogene 32, 269-276. https://doi.org/10.1038/onc.2012.82
  50. Kandoth, C., McLellan, M.D., Vandin, F., Ye, K., Niu, B., Lu, C., Xie, M., Zhang, Q., McMichael, J.F., Wyczalkowski, M.A., et al. (2013). Mutational landscape and significance across 12 major cancer types. Nature 502, 333-339. https://doi.org/10.1038/nature12634
  51. Khmelinskii, A., and Knop, M. (2014). Analysis of protein dynamics with tandem fluorescent protein timers. Methods Mol. Biol. 1174, 195-210. https://doi.org/10.1007/978-1-4939-0944-5_13
  52. Kim, J.M., and Hwang, C.S. (2014). Crosstalk between the Arg/Nend and Ac/N-end rule. Cell Cycle 13, 1366-1367. https://doi.org/10.4161/cc.28751
  53. Kim, I., Miller, C.R., Young, D.L., and Fields, S. (2013). Highthroughput analysis of in vivo protein stability. Mol. Cell Proteomics 12, 3370-3378. https://doi.org/10.1074/mcp.O113.031708
  54. Kim, H.K., Kim, R.R., Oh, J.H., Cho, H., Varshavsky, A., and Hwang, C.S. (2014). The N-terminal methionine of cellular proteins as a degradation signal. Cell 156, 158-169. https://doi.org/10.1016/j.cell.2013.11.031
  55. Kwon, Y.T., Kashina, A.S., and Varshavsky, A. (1999). Alternative splicing results in differential expression, activity, and localization of the two forms of arginyl-tRNA-protein transferase, a component of the N-end rule pathway. Mol. Cell. Biol. 19, 182-193. https://doi.org/10.1128/MCB.19.1.182
  56. Lee, M.J., Tasaki, T., Moroi, K., An, J.Y., Kimura, S., Davydov, I.V., and Kwon, Y.T. (2005). RGS4 and RGS5 are in vivo substrates of the N-end rule pathway. Proc. Natl. Acad. Sci. USA 102, 15030-15035. https://doi.org/10.1073/pnas.0507533102
  57. Lee, K.E., Ahn, J.Y., Kim, J.M., and Hwang, C.S. (2014). Synthetic lethal screen of NAA20, a catalytic subunit gene of NatB Nterminal acetylase in Saccharomyces cerevisiae. J. Microbiol. 52, 842-848. https://doi.org/10.1007/s12275-014-3694-z
  58. Lee, J.H., Jiang, Y., Kwon, Y.T., and Lee, M.J. (2015). Pharmacological modulation of the N-End rule pathway and its therapeutic Implications. Trends Pharmacol. Sci. 36, 782-797. https://doi.org/10.1016/j.tips.2015.07.004
  59. Linster, E., Stephan, I., Bienvenut, W.V., Maple-Grodem, J., Myklebust, L.M., Huber, M., Reichelt, M., Sticht, C., Geir Moller, S., Meinnel, T., et al. (2015). Downregulation of N-terminal acetylation triggers ABA-mediated drought responses in Arabidopsis. Nat. Commun. 6, 7640. https://doi.org/10.1038/ncomms8640
  60. Liu, C.M., Hsieh, C.L., He, Y.C., Lo, S.J., Liang, J.A., Hsieh, T.F., Josson, S., Chung, L.W., Hung, M.C., and Sung, S.Y. (2013). In vivo targeting of ADAM9 gene expression using lentivirusdelivered shRNA suppresses prostate cancer growth by regulating REG4 dependent cell cycle progression. PLoS One 8, e53795. https://doi.org/10.1371/journal.pone.0053795
  61. Lu, Z., and Hunter, T. (2010). Ubiquitylation and proteasomal degradation of the p21(Cip1), p27(Kip1) and p57(Kip2) CDK inhibitors. Cell Cycle 9, 2342-2352. https://doi.org/10.4161/cc.9.12.11988
  62. Ma, D.K., Vozdek, R., Bhatla, N., and Horvitz, H.R. (2012). CYSL-1 interacts with the O2-sensing hydroxylase EGL-9 to promote H2S-modulated hypoxia-induced behavioral plasticity in C. elegans. Neuron 73, 925-940. https://doi.org/10.1016/j.neuron.2011.12.037
  63. Malen, H., Lillehaug, J.R., and Arnesen, T. (2009). The protein Nalpha- terminal acetyltransferase hNaa10p (hArd1) is phosphorylated in HEK293 cells. BMC Res Notes 2, 32. https://doi.org/10.1186/1756-0500-2-32
  64. Meinnel, T., Peynot, P., and Giglione, C. (2005). Processed Ntermini of mature proteins in higher eukaryotes and their major contribution to dynamic proteomics. Biochimie 87, 701-712. https://doi.org/10.1016/j.biochi.2005.03.011
  65. Menssen, R., Schweiggert, J., Schreiner, J., Kusevic, D., Reuther, J., Braun, B., and Wolf, D.H. (2012). Exploring the topology of the Gid complex, the E3 ubiquitin ligase involved in cataboliteinduced degradation of gluconeogenic enzymes. J. Biol. Chem. 287, 25602-25614. https://doi.org/10.1074/jbc.M112.363762
  66. Mogk, A., and Bukau, B. (2010). Cell biology. When the beginning marks the end. Science 327, 966-967. https://doi.org/10.1126/science.1187274
  67. Mullen, J.R., Kayne, P.S., Moerschell, R.P., Tsunasawa, S., Gribskov, M., Colavito-Shepanski, M., Grunstein, M., Sherman, F., and Sternglanz, R. (1989). Identification and characterization of genes and mutants for an N-terminal acetyltransferase from yeast. EMBO J. 8, 2067-2075.
  68. Narita, K. (1958). Isolation of acetylpeptide from enzymic digests of TMV-protein. Biochimi. Biophys. Acta 28, 184-191. https://doi.org/10.1016/0006-3002(58)90445-1
  69. Park, E.C., and Szostak, J.W. (1992). ARD1 and NAT1 proteins form a complex that has N-terminal acetyltransferase activity. EMBO J. 11, 2087-2093.
  70. Park, S.E., Kim, J.M., Seok, O.H., Cho, H., Wadas, B., Kim, S.Y., Varshavsky, A., and Hwang, C.S. (2015). Control of mammalian G protein signaling by N-terminal acetylation and the N-end rule pathway. Science 347, 1249-1252. https://doi.org/10.1126/science.aaa3844
  71. Pena, M.M., Melo, S.P., Xing, Y.Y., White, K., Barbour, K.W., and Berger, F.G. (2009). The intrinsically disordered N-terminal domain of thymidylate synthase targets the enzyme to the ubiquitin- independent proteasomal degradation pathway. J. Biol. Chem. 284, 31597-31607. https://doi.org/10.1074/jbc.M109.038455
  72. Pesaresi, P., Gardner, N.A., Masiero, S., Dietzmann, A., Eichacker, L., Wickner, R., Salamini, F., and Leister, D. (2003). Cytoplasmic N-terminal protein acetylation is required for efficient photosynthesis in Arabidopsis. Plant Cell 15, 1817-1832. https://doi.org/10.1105/tpc.012377
  73. Pezza, J.A., Langseth, S.X., Raupp Yamamoto, R., Doris, S.M., Ulin, S.P., Salomon, A.R., and Serio, T.R. (2009). The NatA acetyltransferase couples Sup35 prion complexes to the [PSI+] phenotype. Mol. Biol. Cell 20, 1068-1080. https://doi.org/10.1091/mbc.e08-04-0436
  74. Piatkov, K.I., Vu, T.M., Hwang, C.S., and Varshavsky, A. (2015). Formyl-methionine as a degradation signal at the N-termini of bacterial proteins. Microbia Cell 2, 376-393. https://doi.org/10.15698/mic2015.10.231
  75. Pietrocola, F., Galluzzi, L., Bravo-San Pedro, J.M., Madeo, F., and Kroemer, G. (2015). Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab. 21, 805-821. https://doi.org/10.1016/j.cmet.2015.05.014
  76. Polevoda, B., Norbeck, J., Takakura, H., Blomberg, A., and Sherman, F. (1999). Identification and specificities of N-terminal acetyltransferases from Saccharomyces cerevisiae. EMBO J. 18, 6155-6168. https://doi.org/10.1093/emboj/18.21.6155
  77. Polevoda, B., Hoskins, J., and Sherman, F. (2009). Properties of Nat4, an N(alpha)-acetyltransferase of Saccharomyces cerevisiae that modifies N termini of histones H2A and H4. Mol. Cell. Biol. 29, 2913-2924. https://doi.org/10.1128/MCB.00147-08
  78. Ravid, T., and Hochstrasser, M. (2008). Diversity of degradation signals in the ubiquitin-proteasome system. Nat. Rev. Mol. Cell Biol. 9, 679-690. https://doi.org/10.1038/nrm2468
  79. Rope, A.F., Wang, K., Evjenth, R., Xing, J., Johnston, J.J., Swensen, J.J., Johnson, W.E., Moore, B., Huff, C.D., Bird, L.M., et al. (2011). Using VAAST to identify an X-linked disorder resulting in lethality in male infants due to N-terminal acetyltransferase deficiency. Am. J. Hum. Genet. 89, 28-43. https://doi.org/10.1016/j.ajhg.2011.05.017
  80. Sawant, S.V., Kiran, K., Singh, P.K., and Tuli, R. (2001). Sequence architecture downstream of the initiator codon enhances gene expression and protein stability in plants. Plant Physiol. 126, 1630-1636. https://doi.org/10.1104/pp.126.4.1630
  81. Scazzari, M., Amm, I., and Wolf, D.H. (2015). Quality control of a cytoplasmic protein complex: chaperone motors and the ubiquitin- proteasome system govern the fate of orphan fatty acid synthase subunit Fas2 of yeast. J. Biol. Chem. 290, 4677-4687. https://doi.org/10.1074/jbc.M114.596064
  82. Scott, D.C., Monda, J.K., Bennett, E.J., Harper, J.W., and Schulman, B.A. (2011). N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex. Science 334, 674-678. https://doi.org/10.1126/science.1209307
  83. Seo, J.H., Cha, J.H., Park, J.H., Jeong, C.H., Park, Z.Y., Lee, H.S., Oh, S.H., Kang, J.H., Suh, S.W., Kim, K.H., et al. (2010). Arrest defective 1 autoacetylation is a critical step in its ability to stimulate cancer cell proliferation. Cancer Res. 70, 4422-4432. https://doi.org/10.1158/0008-5472.CAN-09-3258
  84. Setty, S.R., Strochlic, T.I., Tong, A.H., Boone, C., and Burd, C.G. (2004). Golgi targeting of ARF-like GTPase Arl3p requires its Nalpha-acetylation and the integral membrane protein Sys1p. Nat. Cell Biol. 6, 414-419. https://doi.org/10.1038/ncb1121
  85. Shemorry, A., Hwang, C.S., and Varshavsky, A. (2013). Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway. Mol. Cell 50, 540-551. https://doi.org/10.1016/j.molcel.2013.03.018
  86. Silva, R.D., and Martinho, R.G. (2015). Developmental roles of protein N-terminal acetylation. Proteomics 15, 2402-2409. https://doi.org/10.1002/pmic.201400631
  87. Sriram, S.M., Kim, B.Y., and Kwon, Y.T. (2011). The N-end rule pathway: emerging functions and molecular principles of substrate recognition. Nat. Rev. Mol. Cell Biol. 12, 735-747. https://doi.org/10.1038/nrm3217
  88. Starheim, K.K., Gevaert, K., and Arnesen, T. (2012). Protein Nterminal acetyltransferases: when the start matters. Trends Biochem. Sci. 37, 152-161. https://doi.org/10.1016/j.tibs.2012.02.003
  89. Sundberg, T.B., Darricarrere, N., Cirone, P., Li, X., McDonald, L., Mei, X., Westlake, C.J., Slusarski, D.C., Beynon, R.J., and Crews, C.M. (2011). Disruption of Wnt planar cell polarity signaling by aberrant accumulation of the MetAP-2 substrate Rab37. Chem. Biol. 18, 1300-1311. https://doi.org/10.1016/j.chembiol.2011.07.020
  90. Swanson, R., Locher, M., and Hochstrasser, M. (2001). A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matalpha2 repressor degradation. Genes Dev. 15, 2660-2674. https://doi.org/10.1101/gad.933301
  91. Tasaki, T., Sriram, S.M., Park, K.S., and Kwon, Y.T. (2012). The Nend rule pathway. Ann. Rev. Biochem. 81, 261-289. https://doi.org/10.1146/annurev-biochem-051710-093308
  92. Van Damme, P., Hole, K., Pimenta-Marques, A., Helsens, K., Vandekerckhove, J., Martinho, R.G., Gevaert, K., and Arnesen, T. (2011). NatF contributes to an evolutionary shift in protein Nterminal acetylation and is important for normal chromosome segregation. PLoS Genet. 7, e1002169. https://doi.org/10.1371/journal.pgen.1002169
  93. Van Damme, P., Lasa, M., Polevoda, B., Gazquez, C., Elosegui- Artola, A., Kim, D.S., De Juan-Pardo, E., Demeyer, K., Hole, K., Larrea, E., et al. (2012). N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB. Proc. Natl. Acad. Sci. USA 109, 12449-12454. https://doi.org/10.1073/pnas.1210303109
  94. Varshavsky, A. (2011). The N-end rule pathway and regulation by proteolysis. Protein Sci. 20, 1298-1345. https://doi.org/10.1002/pro.666
  95. Wang, L., Dong, H., Soroka, C.J., Wei, N., Boyer, J.L., and Hochstrasser, M. (2008). Degradation of the bile salt export pump at endoplasmic reticulum in progressive familial intrahepatic cholestasis type II. Hepatology 48, 1558-1569. https://doi.org/10.1002/hep.22499
  96. Weits, D.A., Giuntoli, B., Kosmacz, M., Parlanti, S., Hubberten, H.M., Riegler, H., Hoefgen, R., Perata, P., van Dongen, J.T., and Licausi, F. (2014). Plant cysteine oxidases control the oxygendependent branch of the N-end-rule pathway. Nat. Commun. 5, 3425. https://doi.org/10.1038/ncomms4425
  97. Xu, Z., Payoe, R., and Fahlman, R.P. (2012). The C-terminal proteolytic fragment of the breast cancer susceptibility type 1 protein (BRCA1) is degraded by the N-end rule pathway. J. Biol. Chem. 287, 7495-7502. https://doi.org/10.1074/jbc.M111.301002
  98. Xu, F., Huang, Y., Li, L., Gannon, P., Linster, E., Huber, M., Kapos, P., Bienvenut, W., Polevoda, B., Meinnel, T., et al. (2015). Two N-terminal acetyltransferases antagonistically regulate the stability of a nod-like receptor in Arabidopsis. Plant Cell 27, 1547-1562. https://doi.org/10.1105/tpc.15.00173
  99. Yamano, K., and Youle, R.J. (2013). PINK1 is degraded through the N-end rule pathway. Autophagy 9, 1758-1769. https://doi.org/10.4161/auto.24633
  100. Yi, C.H., Pan, H., Seebacher, J., Jang, I.H., Hyberts, S.G., Heffron, G.J., Vander Heiden, M.G., Yang, R., Li, F., Locasale, J.W., et al. (2011). Metabolic regulation of protein N-alpha-acetylation by Bcl-xL promotes cell survival. Cell 146, 607-620. https://doi.org/10.1016/j.cell.2011.06.050
  101. Zattas, D., and Hochstrasser, M. (2015). Ubiquitin-dependent protein degradation at the yeast endoplasmic reticulum and nuclear envelope. Crit. Rev. Biochem. Mol. Biol. 50, 1-17. https://doi.org/10.3109/10409238.2014.959889
  102. Zattas, D., Adle, D.J., Rubenstein, E.M., and Hochstrasser, M. (2013). N-terminal acetylation of the yeast Derlin Der1 is essential for Hrd1 ubiquitin-ligase activity toward luminal ER substrates. Mol. Biol. Cell 24, 890-900. https://doi.org/10.1091/mbc.E12-11-0838
  103. Zavacki, A.M., Arrojo, E.D.R., Freitas, B.C., Chung, M., Harney, J.W., Egri, P., Wittmann, G., Fekete, C., Gereben, B., and Bianco, A.C. (2009). The E3 ubiquitin ligase TEB4 mediates degradation of type 2 iodothyronine deiodinase. Mol. Cell. Biol. 29, 5339-5347. https://doi.org/10.1128/MCB.01498-08
  104. Zelcer, N., Sharpe, L.J., Loregger, A., Kristiana, I., Cook, E.C., Phan, L., Stevenson, J., and Brown, A.J. (2014). The E3 ubiquitin ligase MARCH6 degrades squalene monooxygenase and affects 3-hydroxy-3-methyl-glutaryl coenzyme A reductase and the cholesterol synthesis pathway. Mol. Cell. Biol. 34, 1262-1270. https://doi.org/10.1128/MCB.01140-13
  105. Zeng, L., Zhang, Q., Li, S., Plotnikov, A.N., Walsh, M.J., and Zhou, M.M. (2010). Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b. Nature 466, 258-262. https://doi.org/10.1038/nature09139
  106. Zenker, M., Mayerle, J., Lerch, M.M., Tagariello, A., Zerres, K., Durie, P.R., Beier, M., Hulskamp, G., Guzman, C., Rehder, H., et al. (2005). Deficiency of UBR1, a ubiquitin ligase of the N-end rule pathway, causes pancreatic dysfunction, malformations and mental retardation (Johanson-Blizzard syndrome). Nat. Genet. 37, 1345-1350. https://doi.org/10.1038/ng1681
  107. Zhang, Z., Kulkarni, K., Hanrahan, S.J., Thompson, A.J., and Barford, D. (2010). The APC/C subunit Cdc16/Cut9 is a contiguous tetratricopeptide repeat superhelix with a homo-dimer interface similar to Cdc27. EMBO J. 29, 3733-3744. https://doi.org/10.1038/emboj.2010.247

Cited by

  1. Acetylation of N-terminus and two internal amino acids is dispensable for degradation of a protein that aberrantly engages the endoplasmic reticulum translocon vol.5, 2017, https://doi.org/10.7717/peerj.3728
  2. Physiological functions and clinical implications of the N-end rule pathway vol.10, pp.3, 2016, https://doi.org/10.1007/s11684-016-0458-7
  3. Pro(moting) the Turnover of Gluconeogenic Enzymes by a New Branch of the N-end Rule Pathway vol.42, pp.5, 2017, https://doi.org/10.1016/j.tibs.2017.03.006
  4. Life and death of proteins after protease cleavage: protein degradation by the N-end rule pathway 2017, https://doi.org/10.1111/nph.14619
  5. Degradation of SerotoninN-Acetyltransferase, a Circadian Regulator, by the N-end Rule Pathway vol.291, pp.33, 2016, https://doi.org/10.1074/jbc.M116.734640
  6. Analyzing N-terminal Arginylation through the Use of Peptide Arrays and Degradation Assays vol.291, pp.40, 2016, https://doi.org/10.1074/jbc.M116.747956
  7. From start to finish: amino-terminal protein modifications as degradation signals in plants vol.211, pp.4, 2016, https://doi.org/10.1111/nph.14105
  8. Identification of single amino acid differences in uniformly charged homopolymeric peptides with aerolysin nanopore vol.9, pp.1, 2018, https://doi.org/10.1038/s41467-018-03418-2
  9. Genetic interactions between ABA signalling and the Arg/N-end rule pathway during Arabidopsis seedling establishment vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-33630-5
  10. Proteomic determination of the lysine acetylome and phosphoproteome in the rat native inner medullary collecting duct vol.50, pp.9, 2018, https://doi.org/10.1152/physiolgenomics.00029.2018
  11. Spotlight on protein N-terminal acetylation vol.50, pp.7, 2018, https://doi.org/10.1038/s12276-018-0116-z
  12. Control of protein degradation by N-terminal acetylation and the N-end rule pathway vol.50, pp.7, 2018, https://doi.org/10.1038/s12276-018-0097-y
  13. Emerging branches of the N-end rule pathways are revealing the sequence complexities of N-termini dependent protein degradation vol.96, pp.3, 2018, https://doi.org/10.1139/bcb-2017-0274
  14. vol.293, pp.8, 2018, https://doi.org/10.1074/jbc.M117.807214
  15. Molecular basis of GID4-mediated recognition of degrons for the Pro/N-end rule pathway vol.14, pp.5, 2018, https://doi.org/10.1038/s41589-018-0036-1
  16. N-terminal acetylation and the N-end rule pathway control degradation of the lipid droplet protein PLIN2 vol.294, pp.1, 2018, https://doi.org/10.1074/jbc.RA118.005556
  17. Ribosome–NatA architecture reveals that rRNA expansion segments coordinate N-terminal acetylation vol.26, pp.1, 2019, https://doi.org/10.1038/s41594-018-0165-y
  18. Ubiquitylation in plants: signaling hub for the integration of environmental signals vol.69, pp.19, 2016, https://doi.org/10.1093/jxb/ery165
  19. Lysine-specific post-translational modifications of proteins in the life cycle of viruses vol.18, pp.17, 2019, https://doi.org/10.1080/15384101.2019.1639305
  20. N-terminal methionine excision of proteins creates tertiary destabilizing N-degrons of the Arg/N-end rule pathway vol.294, pp.12, 2016, https://doi.org/10.1074/jbc.ra118.006913
  21. Beta-amyloid induces apoptosis of neuronal cells by inhibition of the Arg/N-end rule pathway proteolytic activity vol.11, pp.16, 2016, https://doi.org/10.18632/aging.102177
  22. Biophysical and functional characterizations of recombinant RimI acetyltransferase from Mycobacterium tuberculosis vol.51, pp.9, 2016, https://doi.org/10.1093/abbs/gmz075
  23. Does N‐Terminal Protein Acetylation Lead to Protein Degradation? vol.41, pp.11, 2016, https://doi.org/10.1002/bies.201800167
  24. Structural Analyses on the Deamidation of N-Terminal Asn in the Human N-Degron Pathway vol.10, pp.1, 2020, https://doi.org/10.3390/biom10010163
  25. NatB regulates Rb mutant cell death and tumor growth by modulating EGFR/MAPK signaling through the N-end rule pathways vol.16, pp.6, 2016, https://doi.org/10.1371/journal.pgen.1008863
  26. Stabilization of ADAM9 by N-α-acetyltransferase 10 protein contributes to promoting progression of androgen-independent prostate cancer vol.11, pp.7, 2016, https://doi.org/10.1038/s41419-020-02786-2
  27. Tying up loose ends: the N-degron and C-degron pathways of protein degradation vol.48, pp.4, 2016, https://doi.org/10.1042/bst20191094
  28. Molecular basis for recognition of Gly/N-degrons by CRL2ZYG11B and CRL2ZER1 vol.81, pp.16, 2021, https://doi.org/10.1016/j.molcel.2021.06.010
  29. Function and molecular mechanism of N-terminal acetylation in autophagy vol.37, pp.7, 2016, https://doi.org/10.1016/j.celrep.2021.109937