• Title/Summary/Keyword: Protective Coordination

Search Result 119, Processing Time 0.021 seconds

The Study on Protective Coordination of Utility Interconnected Multiple Distributed Generations (다수 분산전원 연계시 계통측 보호협조에 관한 연구)

  • Jung, Seung-Bock;Kim, Jae-Chul;Lee, Bong-Yi
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.233-235
    • /
    • 2004
  • This paper studies protective coordination of utility interconnected multiple distirbuted generations(DG). The study of protective coordination interconnected DG has been conducted. A protective coordination of utility disturbed by reverse current of DG. Therefore, A protetive device is not operate when reverse current flows. In this paper, we use phase difference between V and I. Also, we studied protective coordination algorithm of utility interconnected multiple DG.

  • PDF

A Protective Effectiveness Measure for Distribution Systems (배전계통 보호시스템의 보호능력의 평가방법)

  • 현승호;이승재;임성일;최인선;신재항;최면송
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.5
    • /
    • pp.249-256
    • /
    • 2004
  • This paper suggests a novel evaluation scheme of protective effectiveness in distribution systems. The adequacy of every parameter in a protective device is evaluated for the setting or correction rules. Then, the protective effectiveness of a device, device-wise effectiveness, is obtained by the combination of the parametric evaluation results. The coordination-wise effectiveness between devices can be calculated by evaluating the parameters which contribute the performance of coordination. The protective effectiveness of the whole system can be obtained by combining the device-wise and coordination-wise effectiveness values. The rules, in this paper, are categorized into three groups; rules for single parameter, rules for coordination between parameters, and rules for coordination between protective devices to form a hierarchical calculation model. The proposed method is applied to a typical distribution network to show its effectiveness.

Advanced Protective Coordination Schemes of Utility Interconnected Cogeneration Systems (배전계통에 연계된 열병합발전 시스템의 개선된 보호협조 방안에 관한 연구)

  • Choe, Jun-Ho;Jeong, Seong-Gyo;Chu, Dong-Uk;Kim, Nak-Gyeong;Son, Hak-Sik;Kim, Jae-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.6
    • /
    • pp.280-288
    • /
    • 2000
  • Recently, there has been growing interest in utilizing cogeneration(COGN) systems with a high-energy efficiency due to the increasing energy consumption and the lacking of energy resource. But an insertion of COGN system to existing power distribution system can cause several problems such as voltage variations, harmonics, protective coordination, increasing fault current etc, because of reverse power of COGN, especially in protective coordination. A study on a proper coordination with existing one is being required. The existing power distribution system is operated with radial type by one source and protection system is composed based on unidirectional power source. But an Insertion of COGN system to power distribution system change existing unidirectional power source system to bidirectional power source. Therefore, investigation to cover whole field of power distribution system must be accomplished such as changing of protection devices rating by increasing fault current, reevaluation of protective coordination. In this paper, simulation using PSCAD/EMTDC was accomplished to analyze effect of COGIN on distribution fault current. Also, the existing protection system of 22.9[kV] power distribution system and customers protection system to protect of COGIN was analyzed and the study on protective coordination between of two protection system accomplished.

  • PDF

A Software System for Evaluation Setting and Coordination of Protective Relays in Power Transmission System (송전계통 보호계전기 보호협조 평가 시스템)

  • Choe, Myeon-Song;Lee, Seung-Jae;Min, Byeong-Un;Jo, Pil-Seong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.10
    • /
    • pp.518-524
    • /
    • 2002
  • A software system that has functions of setting and coordination checking of protective relays in power transmission system has been developed. The developed system utilizes database system to store the setting values of protective relays, power system parameters, checks the relay operation and evaluates coordination of relays in real Power system or test system. The fault data to simulates a fault to evaluate the coordination of relays is generated by PSS/E and EMTP. A universal logic generator module is added to adopt the variation of each relay's trip logic. The proposed system has been verified through many tests in the case study, and proved to be very powerful in inspecting the setting values and coordination of relays.

A Novel Digital Over Current Relay with Variable Time-Current Characteristics for Protective Coordination

  • Park, M. S.;P. S. Cho;Lee, S. J.;S. H. Hyun;Kim, K. H.
    • KIEE International Transactions on Power Engineering
    • /
    • v.2A no.3
    • /
    • pp.83-88
    • /
    • 2002
  • An over current relay(OCR), one of the most frequently used protective devices, has time-current characteristics (TCC) to control its trip time according to the current level. It is because an appropriate operating time interval is necessary for coordination with other protective devices. A set of TCC curves of an OCR is, in general, given by the supplier from which a curve is selected by the operator. Therefore, in many cases, it is impossible to consider the operation condition of the given power system exactly. A novel concept of an OCR is suggested in this paper. The proposed OCR has an internal correction module so that it may produce the most adequate TCC curve according to the given protective information for coordination with other devices. With the generated TCC curve, a variety of operation and coordination conditions can be taken into consideration in an effective manner. The suggested OCR is applied to a simple test power system to show very promising results from a coordination point of view.

A study of the directional recloser and sectionalizer protective coordination at 22.9[kV] distribution system with new renewable energy generation (신재생에너지원이 연계된 22.9[kV] 배전계통의 양방향 리클로저와 섹셔널라이저 보호협조 방안)

  • Lee, Yeon-Hwa;Choi, Joon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.525-526
    • /
    • 2007
  • Recently, there has been growing interest in utilizing distributed generation (DG). However, an insertion of DG to existing distribution system can cause several problems such as voltage variations, harmonics, protective coordination, increasing fault current etc,. The typical protection system of the existing distribution system is designed for radial network. But penetration of DG to distribution system changes existing unidirectional power flow to bidirectional power flow. Therefore, investigation to cover whole field of distribution system must be accomplished such as changing of protection devices rating by increasing fault current, reevaluation of protective coordination. This paper presents that PSCAD/EMTDC simulations was accomplished to analyze effect of DG on the distribution protective coordination. In addition, directional recloser-sectionalizer coordination are evaluates distribution system with DG by using PSCAD/EMTDC simulation.

  • PDF

A Study on the Protective Coordination of Generator Overexcitation and Overvoltage Relay (발전기 과여자 및 과전압 계전기 보호협조에 관한 연구)

  • Park, Ji-Kyung;Kim, Kwnag-Hyun;Kim, Chul-Hwan;Lyu, Young-Sik;Yang, Jeong-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1187-1194
    • /
    • 2017
  • After North American wide area black out on August 14, 2003, various studies have been conducted to find out the reason of the disaster. One of main reasons was misoperation of generator protection system. Since then, protective coordination between generator protection system and excitation system controls has been hot issue among electrical engineers. Among various generator protection relays, in this paper, we focused on generator overvoltage and overexcitation relay, which protect the over-flux condition of the generator. Thus, at first, we modeled the generator overvoltage, overexcitation relay and detailed power system including excitation system, governor and etc., based on actual field data. And then, we reviewed the protective coordination of generator overvoltage and overexcitation relay using electromagnetic transient program. In addition, we discussed the protective coordination method for redundant protection relays in both automatic voltage regulator and generator side.

Analysis on SFCL's Impedance for Protective Coordination in Large Transformer installed in Distribution Substation (배전변전소에 대용량변압기로 교체 적용시 보호협조를 위한 초전도 전류제한기의 임피던스 분석)

  • Kim, Jin-Seok;Kim, Myoung-Hoo;You, Il-Kyoung;Moon, Jong-Fil;Lim, Sung-Hun;Kim, Jae-Chul;Ahn, Jae-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1479-1484
    • /
    • 2009
  • The introduction of the large transformer due to the large power demand has increased the fault current in power distribution system. The increased fault current can exceed the cut-off ratings of the circuit breaker. As the methods to solve this problem, the superconducting fault current limiter(SFCL) has been notified. However, the limited fault current by SFCL affects the operational characteristics of the protective device such as overcurrent relay. Therefore, the selection of the proper impedance for the SFCL is required to keep overcurrent relay's protective coordination with the SFCL when a large transformer is introduced into the distribution system. In this paper, the SFCL's impedance for protective coordination was investigates in that a large transformer is introduced.

Energy Coordination of Cascaded Voltage Limiting Type Surge Protective Devices (종속 접속된 전압제한형 서지방호장치의 에너지협조)

  • Lee, Bok-Hee;Shin, Hee-Kyung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.2
    • /
    • pp.29-35
    • /
    • 2013
  • For the purpose of designing and applying optimum surge protection, one of the essential points is to take into account the energy coordination between cascaded surge protective devices(SPDs) and it is important to obtain an acceptable sharing of the energy stress between two cascaded SPDs. In this paper, in case of two voltage-limiting SPDs connected in parallel, the amount of splitting impulse current and energy that flow through each SPDs is investigated as a function of the protective distance. As a result, the energetic coordination between cascaded SPDs is strongly dependent on the voltage protection level of SPDs and the protective distance. It was confirmed that the sharing of the energy between two cascaded SPDs and the limited voltage levels are appropriate when the voltage protection levels of both upstream and downstream SPDs are the same.

A Study on the characteristics about the Protective Coordination in application of conductive system of Superconductor Cable (배전급 초전도 케이블의 상전도계통 적용시 보호협조 특성연구)

  • Lee, Hyun-Chul;Ryu, Kyung-Woo;Hwang, Si-Dole;Sohn, Song-Ho;Lim, Ji-Hyun;Lee, Geun-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.184-186
    • /
    • 2008
  • In this paper, the protective coordination studied in application of HTS cable in conductive system. The protective coordination analyzed to HTS cable using the PSCAD/EMTDC. HTS cable simulated to be appling SFCL or not to be. The result was showed to be protective coordination graph in HTS cable and OCR curve at the power system fault. This graph was proposed to be power operation standard at the HTS cable fault.

  • PDF