• Title/Summary/Keyword: Prosthetic components

Search Result 25, Processing Time 0.021 seconds

Effects of Prosthetic Mass Distribution on Musculoskeletal System during Amputee Gait (의지 보행시 의지 무게 분포가 근골격계에 미치는 영향)

  • Bae, Tae-Soo;Choi, Hwan;Kim, Shin-Ki;Mun, Mu-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.130-137
    • /
    • 2007
  • The optimized prosthetic mass distribution was a controversial problem in the previous studies because they are not supported by empirical evidence. The purpose of the present study was to evaluate the effect of prosthetic mass properties by modeling musculoskeletal system, based on the gait analysis data from two above-knee amputees. The joint torque at hip joint was calculated using inverse dynamic analysis as the mass was changed in knee and foot prosthetic components with the same joint kinematics. The results showed that the peak flexion and abduction torque at the hip joint were 5 Nm and 15 Nm when the mass of the knee component was increased, greater than the peak flexion and abduction torque of the control group at the hip joint, respectively. On the other hand, when the mass of the foot component was increased, the peak flexion and abduction torque at the hip joint were 20 Nm and 15 Nm, greater than the peak flexion and abduction torque of the control, respectively. The hip flexion torque was 4.71-fold greater and 7.92-fold greater than the hip abduction torque for the knee mass increase and the foot mass increase on the average, respectively. Therefore, we could conclude that the effect of foot mass increase was more sensitive than that of knee mass increase for the hip flexion torque. On the contrary, the mass properties of the knee and foot components were not sensitive for the hip abduction torque. In addition, optimized prosthetic mass and appropriate mass distributions were needed to promote efficiency of rehabilitation therapy with consideration of musculoskeletal systems of amputees.

Biomechanical Complications : Fracture and Screw loosening (Biomechanical Complications : 파절과 나사풀림)

  • Kim, Tae in
    • The Journal of the Korean dental association
    • /
    • v.53 no.5
    • /
    • pp.307-317
    • /
    • 2015
  • Although the long-term success of osseointegrated endosseous implants for the support of fixed dental prostheses has been reported, the increasingly widespread use of implant-supported prostheses has led to problems associated with their structural integrity. The most common biomechanical complications observed in dental implant treatment are fracture and screw loosening. The nature of loosening or fracture of dental implant components is complex, since it involves fatigue, fitness, and varied chewing patterns and loads. To assess the service life of the components of the prosthetic system, a knowledge of the loads transmitted through the system is necessary. Design of the final restoration and occlusion in relation to the geometry of a prosthetic restoration has a great influence on the mechanical loading of the implant. It is proposed that control of force in oral cavity may play a larger role in failures than previously believed. Based on theoretic consideration and clinical experiences with dental implant, this article gives simple guidelines for controlling these loads.

Three Dimensional Finite Element Analysis on ITI Implant Supported Fixed Partial Dentures with Various Fitting Accuracy (적합도에 따른 ITI 임플란트 지지 고정성 국소의치의 삼차원 유한요소 분석)

  • Choi, Min-Ho;Lee, Il-Kwon;Kim, Yu-Ree;Cho, Hye-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.1
    • /
    • pp.75-87
    • /
    • 2006
  • The purpose of this study was to investigate the effects of prostheses misfit, cantilever on the stress distribution in the implant components and surrounding bone using three dimensional finite element analysis. Two standard 3-dimensional finite element models were constructed: (1) 3 ITI implant supported, 3-unit fixed partial denture and (2) 3 ITI implant supported, 3-unit fixed partial denture with a distal cantilever. variations of the standard finite element models were made by placing a $100{\mu}m$ or $200{\mu}m$ gap between the fixture, the abutment and the crown on the second premolar and first molar. Total 14 models were constructed. In each model, 244 N of vertical load and 244 N of $30^{\circ}$ oblique load were placed on the distal marginal ridge of the distal molar. von Mises stresses were recorded and compared in the crowns, abutments, crestal compact bones, and trabecular bones. The results were obtained as follows: 1. In the ITI implant system, cement-retained prostheses showed comparatively low stress distributions on all the implant components and fixtures regardless of the misfit sizes under vertical loading. The stresses were increased twice under oblique loading especially in the prostheses with cantilever, but neither showed the effects of misfit size. 2. Under the oblique loading and posterior cantilever, the stresses were highly increased in the crestal bones around ITI implants, but effects of misfit were not shown. Although higher stresses were shown on the apical portion of trabecular bones, the effects by misfit were little and the stresses were increased by the posterior cantilever. 3. When the cement loss happened in the ITI implant supported FPD with misfit, the stresses were increased in the implant componets and supporting structures.

Three-dimensional finite element analysis of buccally cantilevered implant-supported prostheses in a severely resorbed mandible

  • Alom, Ghaith;Kwon, Ho-Beom;Lim, Young-Jun;Kim, Myung-Joo
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.1
    • /
    • pp.12-23
    • /
    • 2021
  • Purpose. The aim of the study was to compare the lingualized implant placement creating a buccal cantilever with prosthetic-driven implant placement exhibiting excessive crown-to-implant ratio. Materials and Methods. Based on patient's CT scan data, two finite element models were created. Both models were composed of the severely resorbed posterior mandible with first premolar and second molar and missing second premolar and first molar, a two-unit prosthesis supported by two implants. The differences were in implants position and crown-to-implant ratio; lingualized implants creating lingually overcontoured prosthesis (Model CP2) and prosthetic-driven implants creating an excessive crown-to-implant ratio (Model PD2). A screw preload of 466.4 N and a buccal occlusal load of 262 N were applied. The contacts between the implant components were set to a frictional contact with a friction coefficient of 0.3. The maximum von Mises stress and strain and maximum equivalent plastic strain were analyzed and compared, as well as volumes of the materials under specified stress and strain ranges. Results. The results revealed that the highest maximum von Mises stress in each model was 1091 MPa for CP2 and 1085 MPa for PD2. In the cortical bone, CP2 showed a lower peak stress and a similar peak strain. Besides, volume calculation confirmed that CP2 presented lower volumes undergoing stress and strain. The stresses in implant components were slightly lower in value in PD2. However, CP2 exhibited a noticeably higher plastic strain. CONCLUSION. Prosthetic-driven implant placement might biomechanically be more advantageous than bone quantity-based implant placement that creates a buccal cantilever.

RELALTIONSHIP BETWEEN THE DEPTH ACCESS HOLE AND PROSTHETIC COMPONENTS IN SCREW RETAINED IMPLANTS (Implant 보철물 access hole의 깊이에 관한 연구)

  • Ko Sok-Min;Byun Tae-Hee;Lee Jai-Bong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.4
    • /
    • pp.374-385
    • /
    • 2002
  • A total of 605 implant fixture prosthesis delivered by 3 clinics and 2 laboratories were examined in this study, The object of this study was to determine the proper length of screw head. The depth of access hole were measured and compared to the type of fixture, abutment, gold screw and prosthesis. The results were as follows : 1 The average number of fixtures per patient were 2.97. 2. The number of fixture installed in the upper posterior area are 327(55.56 %), the upper posterior area 171 (28.25%). 3. The depth of access hole is 4.23 mm in shallow area, and 5.46 mm in deep area and the differences were 1.23 mm. 4. The average depth of the aceess hole of the UCLA abutment were 5.02 mm. 5. The number of 4-5 mm access hole depth were 60(22.39%) in abutment screw level and the number of 4-5 mm depth in fixture level were 101 (29.19%). 6. In the shape of screw head, hexed type were 576(95.21%), slotted type were 29(4.79%).

The Value of Computed Tomography Scan in Three-dimensional Planning and Intraoperative Navigation in Primary Total Hip Arthroplasty

  • Fabio Mancino;Andreas Fontalis;Ahmed Magan;Ricci Plastow;Fares S. Haddad
    • Hip & pelvis
    • /
    • v.36 no.1
    • /
    • pp.26-36
    • /
    • 2024
  • Total hip arthroplasty (THA) is a frequently performed procedure; the objective is restoration of native hip biomechanics and achieving functional range of motion (ROM) through precise positioning of the prosthetic components. Advanced three-dimensional (3D) imaging and computed tomography (CT)-based navigation are valuable tools in both the preoperative planning and intraoperative execution. The aim of this study is to provide a thorough overview on the applications of CT scans in both the preoperative and intraoperative settings of primary THA. Preoperative planning using CT-based 3D imaging enables greater accuracy in prediction of implant sizes, leading to enhancement of surgical workflow with optimization of implant inventory. Surgeons can perform a more thorough assessment of posterior and anterior acetabular wall coverage, acetabular osteophytes, anatomical landmarks, and thus achieve more functional implant positioning. Intraoperative CT-based navigation can facilitate precise execution of the preoperative plan, to attain optimal positioning of the prosthetic components to avoid impingement. Medial reaming can be minimized preserving native bone stock, which can enable restoration of femoral, acetabular, and combined offsets. In addition, it is associated with greater accuracy in leg length adjustment, a critical factor in patients' postoperative satisfaction. Despite the higher costs and radiation exposure, which currently limits its widespread adoption, it offers many benefits, and the increasing interest in robotic surgery has facilitated its integration into routine practice. Conducting additional research on ultra-low-dose CT scans and examining the potential for translation of 3D imaging into improved clinical outcomes will be necessary to warrant its expanded application.

A STUDY ON THE ADAPTATION PATTERNS OF EACH SKELETAL COMPONENTS TO THE FLEXURES OF CRANIAL BASES (두개저(頭蓋低)의 굴곡도(屈曲度)에 따른 각 골격요소(骨格要素)의 편응양상(遍應樣相)에 관(關)한 연구(硏究))

  • Im, Hong-Seog;Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.22 no.1
    • /
    • pp.229-239
    • /
    • 1992
  • This study was performed to define the adaptation patterns of each skeletal components to the flexures of cranial bases, using 91 males from the ages of 17 to 36 and 64 females from the ages of 16 to 34, without orthodontic or prosthetic treatment experiences and with pleasant profiles as subjects. The conclusions are as follow: 1. When considering the changes of flexure of cranial base (Ba-SE-FMN) in both sexes, changes in the anterior cranial base angle to the PM Vertical line (SE-FMN/PMV) were greater than the changes in the posterior cranial base angle to the PM Vertical line (Ba-SE/PMV). Subsequently the nasomaxillary complex showed antero-superior rotating effect as the cranial base angles were increased and postero-inferior rotating effect as they were decreased. 2. Horizontal mandibular angle (Ba-SE-Me) was increased in both sexes as cranial base angle increases (Ba-SE-FMN) and it decreased as the latter was decreases. There by indicating compensatory effects. 3. Maxillary angle (SE-FMN-A) was decreased in both sexes as cranial base angle (Ba-SE-FMN) increases and it increased as the latter was decreased. There by indicating compensatory effects. 4. Mandibular ramus angle to posterior cranial base was decreased in both sexes as cranial base angle increases. There by indicating compensatory effect to anteriorly displaced maxilla and the mandibular ramus angle was increased as the cranial base angle decreases. There by indicating compensatory effect to posteriorly displace maxilla. 5. The length of posterior upper facial height was decreased in both sexes as the cranial base angle increases and it increased as the latter was decreased.

  • PDF

Dynamic Behavior Analysis of the Heart Valve Prostheses Considering Squeeze Film Effect During Closing Phase (스퀴즈필름효과를 고려한 인공심장밸브의 닫힘시 동적거동 해석)

  • 천길정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.443-450
    • /
    • 1995
  • An analysis of the dynamics of a mechanical monoleaflet heart valve prosthesis in the closing phase is presented. Employing the moment equilibrium principles on the occluder motion and the squeeze film dynamics of the fluid between the occluder and the guiding strut at the instant of impact, the velocity of the occluder tip and the impact force were computed. The dynamics of fluid being squeezed between the occluder and the guiding struts is accounted for by Reynold's equation. The effect of the fluid being squeezed between the occluder and the guiding strut was to reduce the velocity of the occluder tip at the instant of valve closure as well as dampen the fluttering of the occluder before coming to rest in the fully closed position. The squeeze film fluid pressure changed rapidly from a high positive value to a relatively large negative value in less than 1 msec. The results of this study may be extended for the analysis of cavitation inception, mechanical stresses on the formed elements and valve components as well as to estimate the endurance limits of the prosthetic valves.

Underactuated Finger Mechanism for Body-Powered Partial Prosthesis (신체 힘에 의해 동작되는 부분 의수를 위한 부족구동 손가락 메커니즘)

  • Yoon, Dukchan;Lee, Geon;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.193-204
    • /
    • 2016
  • This paper presents an anthropomorphic finger prosthesis for amputees whose proximal phalanx is mutilated. The finger prosthesis to be proposed is able to make the amputees to perform the natural motion such as flexion/extension as well as self-adaptive grasping motion as if normal human finger does. The mechanism of finger prosthesis with three degrees-of-freedom (DOFs) consists of two five-bar and one four-bar linkages. Two passive components composed of torsional spring and mechanical stopper and only one active joint are employed in order to realize an underactuation. Each passive component is installed into the five-bar linkage. In order to activate the finger prosthesis, it is required for the user to flex and extend the remaining proximal phalanx on the metacarpophalangeal (MCP) joint, not an electric motor. Thus the finger prosthesis conducts not only the natural motion according to his/her intention but also the grasping motion through the deformation of springs by the object for human finger-like behavior. In order to reveal the operation principle of the proposed mechanism, kinematic analysis is performed for the linkage design. Finally both simulations and experiments are conducted in order to reveal the design feasibility of the proposed finger mechanism.