• 제목/요약/키워드: Prostate cancer cell

Search Result 336, Processing Time 0.027 seconds

Anti-Proliferative Effects of Hesa-A on Human Cancer Cells with Different Metastatic Potential

  • Jahanban-Esfahlan, Rana;Abasi, Mozhgan;Sani, Hakimeh Moghaddas;Abbasi, Mehran Mesgari;Akbarzadeh, Abolfazl
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.6963-6966
    • /
    • 2015
  • Background: During the past few years, Hesa-A, a herbal-marine mixture, has been used to treat cancer as an alternative medicine in Iran. Based on a series of studies, it is speculated that Hesa-A possesses special cytotoxic effects on invasive tumors. To test this hypothesis, we investigated the selective anticancer effects of Hesa-A on several cancer cell lines with different metastatic potential. Materials and Methods: Hesa-A was prepared in normal saline as a stock solution of 10 mg/ml and further diluted to final concentrations of $100{\mu}/ml$, $200{\mu}g/ml$, $300{\mu}g/ml$ and $400{\mu}g/ml$. MTT-based cytotoxicity assays were performed with A549 (lung non small cancer), MCF-7 (breast adenocarcinoma), SKOV3 (ovarian cancer), and PC-3 (prostate adenocarcinoma) cells. Results: All treated cancer cells showed significant (P<0.01) or very significant (P<0.0001) differences in comparison to negative control at almost all of the tested doses ($100-400{\mu}g/ml$). At the lower dose ($100{\mu}g/ml$), Hesa-A reduced cell viability to 66%, 45.3%, 35.5%, 33.2% in SKOV3, A549, PC-3 and MCF-7 cells, respectively. Moreover, at the highest dose ($400{\mu}g/ml$), Hesa-A resulted in 88.5%, 86.6%, 84.9% and 79.3% growth inhibition in A549, MCF-7, PC-3 and SKOV3 cells, respectively. Conclusions: Hesa-A exert potent cytotoxic effects on different human cancer cells, especially those with a high metastatic potential.

Anti Tumoral Properties of Punica Granatum (Pomegranate) Peel Extract on Different Human Cancer Cells

  • Modaeinama, Sina;Abasi, Mozhgan;Abbasi, Mehran Mesgari;Jahanban-Esfahlan, Rana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.5697-5701
    • /
    • 2015
  • Background: Medicinal plants, especially examples rich in polyphenolic compounds, have been suggested to be chemopreventive on account of antioxidative properties. Punica granatum (PG) (pomegranate) is a well known fruit in this context, but its cytotoxicity in cancer cells has not been extensively studied. Here, we investigated the antiproliferative properties of a peel extract of PG from Iran in different human cancer cells. Materials and Methods: A methanolic extract of pomegranate peel (PPE) was prepared. Total phenolic content(TPC) and total flavonoid conetnt (TFC) were determined by colorimetric assays. Antioxidant activity was determined by DPPH radical scavenging activity. The cytotoxicity of different doses of PPE (0, 5, 20, 100, 250, 500, $1000{\mu}g/ml$) was evaluated by MTT assays with A549 (lung non small cell cancer), MCF-7 (breast adenocarcinoma), SKOV3 (ovarian cancer), and PC-3 (prostate adenocarcinoma) cells. Results: Significant (P<0.01) or very significant (P<0.0001) differences were observed in comparison with negative controls at all tested doses (5-$1000{\mu}g/ml$). In all studied cancer cells, PPE reduced the cell viability to values below 40%, even at the lowest doses. In all cases, IC50 was determined at doses below $5{\mu}g/ml$. In this regard, MCF-7 breast adenocarcinoma cells were the most responsive cells to antiprolifreative effects of PPE with a maximum mean growth inhibition of 81.0% vs. 69.4%, 79.3% and 77.5% in SKOV3, PC-3 and A549 cells, respectively. Conclusions: Low doses of PPE exert potent anti-proliferative effects in different human cancer cells and it seems that MCF-7 breast adenocarcinoma cells are the most cells and SKOV3 ovarian cancer cells the least responsive in this regard. However, the mechanisms of action need to be addressed.

Expression and Clinical Significance of REPS2 in Human Esophageal Squamous Cell Carcinoma

  • Zhang, Hang;Duan, Chao-Jun;Zhang, Heng;Cheng, Yuan-Da;Zhang, Chun-Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.2851-2857
    • /
    • 2013
  • Objective: REPS2 plays important roles in inhibiting cell proliferation, migration and in inducing apoptosis of cancer cells, now being identified as a useful biomarker for favorable prognosis in prostate and breast cancers. The purpose of this study was to assess REPS2 expression and to explore its role in esophageal squamous cell carcinoma (ESCC). Methods: Protein expression of REPS2 in ESCCs and adjacent non-cancerous tissues from 120 patients was analyzed by immunohistochemistry and correlated with clinicopathological parameters and patient outcome. Additionally, thirty paired ESCC tissues and four ESCC cell lines and one normal human esophageal epithelial cell line were evaluated for REPS2 mRNA and protein expression levels by quantitative RT-PCR and Western blotting. Results: REPS2 mRNA and protein expression levels were down-regulated in ESCC tissues and cell lines. Low protein levels were significantly associated with primary tumour, TNM stage, lymph node metastasis and recurrence (all, P < 0.05). Survival analysis demonstrated that decreased REPS2 expression was significantly associated with shorter overall survival and disease-free survival (both, P < 0.001), especially in early stage ESCC patients. When REPS2 expression and lymph node metastasis status were combined, patients with low REPS2 expression/lymph node (+) had both poorer overall and disease-free survival than others (both, P < 0.001). Cox multivariate regression analysis further revealed REPS2 to be an independent prognostic factor for ESCC patients. Conclusions: Our findings demonstrate that downregulation of REPS2 may contribute to malignant progression of ESCC and represent a novel prognostic marker and a potential therapeutic target for ESCC patients.

Stigmasterol isolated from marine microalgae Navicula incerta induces apoptosis in human hepatoma HepG2 cells

  • Kim, Young-Sang;Li, Xi-Feng;Kang, Kyong-Hwa;Ryu, BoMi;Kim, Se Kwon
    • BMB Reports
    • /
    • v.47 no.8
    • /
    • pp.433-438
    • /
    • 2014
  • Plant sterols have shown potent anti-proliferative effects and apoptosis induction against breast and prostate cancers. However, the effect of sterols against hepatic cancer has not been investigated. In the present study, we assessed whether the stigmasterol isolated from Navicula incerta possesses apoptosis inductive effect in hepatocarcimona (HepG2) cells. According to the results, Stigmasterol has up-regulated the expression of pro-apoptotic gene expressions (Bax, p53) while down-regulating the anti-apoptotic genes (Bcl-2). Probably via mitochondrial apoptosis signaling pathway. With the induction of apoptosis caspase-8, 9 were activated. The DNA damage and increase in apoptotic cell numbers were observed through Hoechst staining, annexin V staining and cell cycle analysis. According to these results, we can suggest that the stigmasterol shows potent apoptosis inductive effects and has the potential to be tested as an anti-cancer therapeutic against liver cancer.

Synthesis of [1,2,4]-Triazole Derivatives and Their Anticancer Activities ([1,2,4]-Triazole 유도체의 합성 및 항암활성)

  • Lee, So-Ha;Kim, Jun-Suck;Jeon, Jae-Ho;Lee, Sook-Ja
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.109-116
    • /
    • 2007
  • 2-Chlorobenzoyl hydrazine refluxed with benzoyl isothiocyanate and phenyl isothiocyanate in ethanol for 3 hours to give benzamide derivative (1) and anilinederivative (2) on yield of 71%and 95%, respectively. Benzamide derivative (1) reacted with ethanolic sodium hydroxide on reflux to afford cyclization product (3), followed by general substitution reaction of two steps to give acetamide (5), and derivatived acetamides 7a-7k, while aniline derivative (2) reacted with ethanolic sodium hydroxide on reflux to afford another cyclization product (4). Thiol (4) reacted with N-phenyl chloroacetamide in the presence of potassim carbonate to give acetamide derivative (6). Compounds 1-7kwere evaluated for their growth inhibition against five cancer cell lines, including human lung carcinoma (A-549), human prostate cancer (DU145), human colon adenocarcinoma (HT-29), human malignant melanoma (SK-MEL-2) and human ovary malignant ascites (SK-OV-3) with sulforhodamine B (SRB) assay. All compounds (1-7k) showed low inhibition activities under 50% on 100M concentration.

Anti-Growth Effect of Kaempferol, a Major Component of Polygonati Rhizoma, in Hepatocarcinoma Cells (간암 세포주에서 황정(黃精)의 주요 성분인 Kaempferol의 성장 억제 효과)

  • Joo, Ye-Jin;Jeong, Ji-Cheon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.519-526
    • /
    • 2012
  • Recently, herbal flavonoids have been implicated for anti-cancer therapy. Flavonoids as a commonly known for their anti-oxidant activity, are contained in the herbal medicine as well as root of plants, vegetables, fruits, grains, tea, and wine. Kaempferol, a component of Polygonati rhizoma, a member of the herbal flavonoids, has been studied for anti-hypercholesterol, anti-hypertension and anti-diabetes. It is also known to be effective in anti-cancer therapy for breast, prostate and other type of cancers. However, the anti-cancer therapeutic mechanisms are pooly understood. Here, we investigated the molecular mechanism underlying kaempferol-induced anti-cancer effects using the human liver cancer cell lines, Hep3B, HepG2, and Sk-Hep-1, and human Chang liver cell as a control. As shown by the FACS analysis, measurement of caspase activity, DAPI and trypan blue staining, and DNA fragmentation assay, kaempferol induced apoptosis in the liver cancer cells with the greater potential in Hep3B cells than other liver cancer cells. In addition, we performed microarray analysis to profile the genome-wide mRNA expression regulated by kaempferol. Many of the apoptosis-related genes were significantly induced in kaempferol-treated Hep3B cells, in particular, the genes associated with MAPK cascade. Additionally, kaempferol induced the mRNA expression of genes involved in MKK7-JNK cascade, MKK3-p38 cascade, and caspase signaling pathway, which are all known to trigger apoptosis. Overall, our data suggest that kaempferol has anti-liver cancer effects by inducing apoptosis through the MKK7-JNK cascade, MKK3-p38 cascade, and caspase signaling pathways.

Modulation of Activator Protein-1 (AP-1) and MAPK Pathway by Flavonoids in Human Prostate Cancer PC3 Cells

  • Gopalakrishnan, Avanthika;Xu, Chang-Jiang;Nair, Sujit S.;Chen, Chi;Hebbar, Vidya;Kong, Ah-Ng Tony
    • Archives of Pharmacal Research
    • /
    • v.29 no.8
    • /
    • pp.633-644
    • /
    • 2006
  • In last couple of decades the use of natural compounds like flavonoids as chemopreventive agents has gained much attention. Our current study focuses on identifying chemopreventive flavonoids and their mechanism of action on human prostate cancer cells. Human prostate cancer cells (PC3), stably transfected with activator protein 1 (AP-1) luciferase reporter gene were treated with four main classes of flavonoids namely flavonols, flavones, flavonones, and isoflavones. The maximum AP-1 luciferase induction of about 3 fold over control was observed with $20\;{\mu}M$ concentrations of quercetin, chrysin and genistein and $50\;{\mu}M$ concentration of kaempferol. At higher concentrations, most of the flavonoids demonstrated inhibition of AP-1 activity. The MTS assay for cell viability at 24 h showed that even at a very high concentration $(500\;{\mu}M)$, cell death was minimal for most of the flavonoids. To determine the role of MAPK pathway in the induction of AP-1 by flavonoids, Western blot of phospho MAPK proteins was performed. Four out of the eight flavonoids namely kaempferol, apigenin, genistein and naringenin were used for the Western Blot analysis. Induction of phospho-JNK and phospho-ERK activity was observed after two hour incubation of PC3-AP1 cells with flavonoids. However no induction of phospho-p38 activity was observed. Furthermore, pretreating the cells with specific inhibitors of JNK reduced the AP-1 luciferase activity that was induced by genistein while pretreatment with MEK inhibitor reduced the AP-1 luciferase activity induced by kaempferol. The pharmacological inhibitors did not affect the AP-1 luciferase activity induced by apigenin and naringenin. These results suggest the possible involvement of JNK pathway in genistein induced AP-1 activity while the ERK pathway seems to play an important role in kaempferol induced AP-1 activity.

Apoptosis-Inducing Effect of Herba Patriniae Extract in Androgen Independent Prostate Cancer DU145 Cells (남성호르몬 비의존형 전립선 암세포에서 패장 추출물의 세포고사 유도 효과)

  • Kwon Kang Beom;Kim Eun Kyung;Ryu Cheal In;Park Hyung Kwon;Seong Ki Ho;Song Je Moon;Lee Kyung Yong;Kwon Young Dal;Seo Eun A;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.6
    • /
    • pp.1661-1665
    • /
    • 2004
  • Herba Patriniae(HP) has been known to exert anti-tumoral activity in Korea. However, its molecular mechanism, of action is not understood. In this study, we found that HP induced apoptosis in androgen-dependent prostate cancer DU145 cells as evidenced by DNA fragmentation and chromatine condensation in hoechst dye staining. Our data demonstrated that HP-induced apoptotic cell death was accompanied by activation of caspase-3 and cleavages of its substrates, poly(ADP-ribose) polymerase(PARP) in a time- and concentration-dependent manner. Taken together, these results suggest that HP induces the activation of caspase-3, degradation of PARP, and eventually leads to apoptotic cell death.

Suppression of Human Prostate Cancer Cell Growth by β-Lapachone via Down-regulation of pRB Phosphorylation and Induction of Cdk Inhibitor p21WAF1/CIP1

  • Choi, Yung-Hyun;Kang, Ho-Sung;Yoo, Mi-Ae
    • BMB Reports
    • /
    • v.36 no.2
    • /
    • pp.223-229
    • /
    • 2003
  • The product of a tree (Tabebuia avellanedae) from South America, $\beta$-lapachone, is known to exhibit various pharmacological properties, the mechanisms of which are poorly understood. The aim of the present study was to further elucidate the possible mechanisms by which $\beta$-lapachone exerts its anti-proliferative action in cultured human prostate cancer cells. We observed that the proliferation-inhibitory effect of $\beta$-lapachone was due to the induction of apoptosis, which was confirmed by observing the morphological changes and cleavage of the poly(ADP-ribose) polymerase protein. A DNA flow cytometric analysis also revealed that $\beta$-lapachone arrested the cell cycle progression at the G1 phase. The effects were associated with the down-regulation of the phosphorylation of the retinoblastoma protein (pRB) as well as the enhanced binding of pRB and the transcription factor E2F-1. Also, $\beta$-lapachone suppressed the cyclindependent kinases (Cdks) and cyclin E-associated kinase activity without changing their expressions. Furthermore, this compound induced the levels of the Cdk inhibitor $p21^{WAF1/CIP1}$ expression in a p53-independent manner, and the p21 proteins that were induced by $\beta$-lapachone were associated with Cdk2. $\beta$-lapachone also activated the reporter construct of a p21 promoter. Overall, our results demonstrate a combined mechanism that involves the inhibition of pRB phosphorylation and induction of p21 as targets for $\beta$-lapachone. This may explain some of its anticancer effects.

Condurango (Gonolobus condurango) Extract Activates Fas Receptor and Depolarizes Mitochondrial Membrane Potential to Induce ROS-dependent Apoptosis in Cancer Cells in vitro -CE-treatment on HeLa: a ROS-dependent mechanism-

  • Bishayee, Kausik;Mondal, Jesmin;Sikdar, Sourav;Khuda-Bukhsh, Anisur Rahman
    • Journal of Pharmacopuncture
    • /
    • v.18 no.3
    • /
    • pp.32-41
    • /
    • 2015
  • Objectives: Condurango (Gonolobus condurango) extract is used by complementary and alternative medicine (CAM) practitioners as a traditional medicine, including homeopathy, mainly for the treatment of syphilis. Condurango bark extract is also known to reduce tumor volume, but the underlying molecular mechanisms still remain unclear. Methods: Using a cervical cancer cell line (HeLa) as our model, the molecular events behind condurango extract's (CE's) anticancer effect were investigated by using flow cytometry, immunoblotting and reverse transcriptase-polymerase chain reaction (RT-PCR). Other included cell types were prostate cancer cells (PC3), transformed liver cells (WRL-68), and peripheral blood mononuclear cells (PBMCs). Results: Condurango extract (CE) was found to be cytotoxic against target cells, and this was significantly deactivated in the presence of N-acetyl cysteine (NAC), a scavenger of reactive oxygen species (ROS), suggesting that its action could be mediated through ROS generation. CE caused an increase in the HeLa cell population containing deoxyribonucleic acid (DNA) damage at the G zero/Growth 1 (G0/G1) stage. Further, CE increased the tumor necrosis factor alpha ($TNF-{\alpha}$) and the fas receptor (FasR) levels both at the ribonucleic acid (RNA) and the protein levels, indicating that CE might have a cytotoxic mechanism of action. CE also triggered a sharp decrease in the expression of nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$) both at the RNA and the protein levels, a possible route to attenuation of B-cell lymphoma 2 (Bcl-2), and caused an opening of the mitochondrial membrane's permeability transition (MPT) pores, thus enhancing caspase activities. Conclusion: Overall, our results suggest possible pathways for CE mediated cytotoxicity in model cancer cells.