• Title/Summary/Keyword: Prostate cancer cell

Search Result 335, Processing Time 0.025 seconds

Profile of Gene Expression Changes Treated with Compound K Induced Cell Cycle Arrest and Cell Death of Prostate Cancer PC-3 Cell Line (인간 전립선암 PC-3 세포에서 Compound K에 의한 세포주기 조절 및 세포사멸 유전자 발현 변화)

  • Kim, Kwang-Youn;Park, Kwang-Il;Ahn, Soon-Cheol
    • Herbal Formula Science
    • /
    • v.29 no.4
    • /
    • pp.267-275
    • /
    • 2021
  • Objectives : Previously, we reported that compound K isolated from fermented ginseng by Aspillus oryzae has a wide biochemical and pharmacological effect, including anti-cancer activity in prostate cancer PC-3 cells. Despite these findings, its signaling pathway and gene expression pattern are not clearly understood. Methods : To confirm the gene expression study of treated with compound K in PC-3 cells, a cDNA microarray chip composed of 44K human cDNA probes was used. MTT assay, western blot analysis, propidium iodide staining, and annexin V/propidium iodide staining were analyzed. Results : We confirmed the differences of gene expression profiles. Then, we analyzed with the cell cycle arrest, cell death and cell proliferation related genes using DAVID database. Conclusions : Our finding should be useful for understanding genome-wide expression patterns of compound K-mediated cell cycle arrest toward induction of cell death and be helpful for finding future cancer therapeutic targets for prostate cancer cells.

Vitamin C Enhances the Effect of Etoposide to Inhibit Human Prostate Cancer Growth in vitro (Vitamin C+etoposide 복합투여에 의한 전립선 암세포 성장 억제의 상승 효과)

  • Lee, Myeong-Seon
    • Applied Microscopy
    • /
    • v.38 no.3
    • /
    • pp.245-250
    • /
    • 2008
  • Etoposide (Eto) is chemotherapeutic compounds that is currently used in the treatment of metastatic prostate cancer but new therapeutic agents are needed for the treatment of androgen-independent prostate cancer. The objective of the present study was to determine whether vitamin C (VC), the antioxidant, plays a role in regulating the growth of prostate cancer cell lines and whether VC has synergistic effect to tumor cell killing by chemotherapeutic drugs. Androgen-dependent LNCaP and androgen-independent DU-145 prostate cancer cell lines were used in this study. Both cells presented increase of dose- and time-dependent cytotoxicity in Eto-treated cultures. The combined treatment with Eto and VC significantly increased the percentage of apoptotic cells compared to Eto-treated cells(p<0.05). The present findings demonstrated that VC inhibited the growth of prostate cancer cell lines by Eto-mediated cytotoxicity and induced apoptosis. These results suggest that the chemotherapeutic effect of Eto on prostate cancer can be enhanced by VC.

Melittin Inhibits Human Prostate Cancer Cell Growth through Induction of Apoptotic Cell Death

  • Park Hye-Ji;Lee Yong-Kyung;Song Ho-Seub;Kim Goon-Joung;Son Dong-Ju;Lee Jae-Woong;Hong Jin-Tae
    • Toxicological Research
    • /
    • v.22 no.1
    • /
    • pp.31-37
    • /
    • 2006
  • It was previously found that melittin inhibited $NF-{\kappa}B$ activity by reacting with signal molecules of $NF-{\kappa}B$ which is critical contributor in cancer cell growth by induction of apoptotic cell death. We here investigated whether melittin inhibits cell growth of human prostate cancer cells through induction of apoptotic cell death, and the possible signal pathways. Melittin ($0{\sim}1\;{\mu}g/ml$) inhibited prostate cancer cell growth in a dose dependent manner. Conversely related to the growth inhibitory effect, melittin increased the induction of apoptotic cell death in a dose dependent manner. Melittin also inhibited DNA binding activity of $NF-{\kappa}B$, an anti-apoptotic transcriptional factor. Consistent with the induction of apoptotic cell death and inhibition of $NF-{\kappa}B$, melittin increased the expression of pro-apoptotic proteins caspase-3, and Bax but down-regulated anti-apoptotic protein Bcl-2. These findings suggest that melittin could inhibit prostate cancer cell growth, and this effect may be related with the induction of apoptotic cell death via inactivation of $NF-{\kappa}B$.

Inhibitory effect of Cinnamomi Cortex extract on motility of prostate cancer cells through reducing YAP activity (육계의 전립선암세포에서 YAP 활성 억제를 통한 전이 저해 효능 연구)

  • Jung, Hyo Won;Kim, Ok-Hyeon;Wang, Tsu Yu;Kim, Seong Eun;Park, Yong-Ki;Lee, Hyun Jung
    • The Korea Journal of Herbology
    • /
    • v.34 no.3
    • /
    • pp.55-61
    • /
    • 2019
  • Objectives : Recently, natural bioactive components catch a major attention for their potent anticarcinogenic activity. In this study, the inhibitory effect of Cinnamomi Cortex (CC) was examined in PC3 prostate cancer cells. Methods : The toxicity of CC extract was evaluated with cell viability and cell morphology. The activity of Yes associated protein (YAP) was tested with qRT-PCR for the target gene expression such as CTGF and AMOTL2. Western blotting was performed for the evaluation of phospho-YAP level. For cell motility analysis, cellular motility was imaged by live imaging system for 6 hr. Successive images were used for the generation of movie file. Using this movie file, cellular migration was manually tracked and analyzed using time-lapse microscope and Fiji software. Results : Cytotoxicity of CC extract was not detected at $500{\mu}g/m{\ell}$ or below concentration. Although $500{\mu}g/m{\ell}$ of CC extract reduced CTGF and AMOTL2 gene expression as YAP target genes, it was not statistically significant (CTGF expression P=0.0605, AMOTL2 expression P=0.4478). However, phosphorylated YAP was highly enhanced by CC extract treatment, when normalized with total YAP protein expression, suggesting YAP activation was inhibited. Finally prostate cancer cell motility was markedly reduced by $500{\mu}g/m{\ell}$ of CC extract. Conclusions : CC extract suppresses cancer cell motility and migration ability through inhibiting YAP activation without prostate cancer cell death, suggesting that this herb might be effective therapeutic drug for prostate cancer metastasis.

Emerging Roles of Human Prostatic Acid Phosphatase

  • Kong, Hoon Young;Byun, Jonghoe
    • Biomolecules & Therapeutics
    • /
    • v.21 no.1
    • /
    • pp.10-20
    • /
    • 2013
  • Prostate cancer is one of the most prevalent non-skin related cancers. It is the second leading cause of cancer deaths among males in most Western countries. If prostate cancer is diagnosed in its early stages, there is a higher probability that it will be completely cured. Prostatic acid phosphatase (PAP) is a non-specific phosphomonoesterase synthesized in prostate epithelial cells and its level proportionally increases with prostate cancer progression. PAP was the biochemical diagnostic mainstay for prostate cancer until the introduction of prostate-specific antigen (PSA) which improved the detection of early-stage prostate cancer and largely displaced PAP. Recently, however, there is a renewed interest in PAP because of its usefulness in prognosticating intermediate to high-risk prostate cancers and its success in the immunotherapy of prostate cancer. Although PAP is believed to be a key regulator of prostate cell growth, its exact role in normal prostate as well as detailed molecular mechanism of PAP regulation is still unclear. Here, many different aspects of PAP in prostate cancer are revisited and its emerging roles in other environment are discussed.

Efficacy of Using Sequential Primary Circulating Prostate Cell Detection for Initial Prostate Biopsy in Men Suspected of Prostate Cancer

  • Murray, Nigel P;Reyes, Eduardo;Fuentealba, Cynthia;Jacob, Omar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3385-3390
    • /
    • 2016
  • Background: Sequential use of circulating prostate cell (CPC) detection has been reported to potentially decrease the number of unnecessary prostate biopsies in men suspected of prostate cancer. In order to determine the real world effectiveness of the test, we present a prospective study of men referred to two hospitals from primary care physicians, one using CPC detection to determine the necessity of prostate biopsy the other not doing so. Materials and Methods: Men with a suspicion of prostate cancer because of elevated PSA >4.0ng/ml or abnormal DRE were referred to Hospitals A or B. In Hospital A all underwent 12 core TRUS biopsy, in Hospital B only men CPC (+), with mononuclear cells obtained by differential gel centrifugation identified using double immunomarking with anti-PSA and anti-P504S, were recommended to undergo TRUS biopsy. Biopsies were classifed as cancer or no-cancer. Diagnostic yields were calculated, including the number of posible biopsies that could be avoided and the number of clinically significant cancers that would be missed. Results: Totals of 649 men attended Hospital A, and 552 men attended Hospital B; there were no significant differences in age or serum PSA levels. In Hospital A, 228 (35.1%) men had prostate cancer detected, CPC detection had a sensitivity of 80.7%, a specificity of 88.6%, and a negative predictive value of 89.5%. Some 39/44 men CPC negative with a positive biopsy had low grade small volume tumors. In Hospital B, 316 (57.2%) underwent biopsy. There were no significant differences between populations in terms of CPC and biopsy results. The reduction in the number of biopsies was 40%. Conclusions: The use of sequential CPC testing in the real world gives a clear decision structure for patient management and can reduce the number of biopsies considerably.

Effects of Ginsenosides $Rg_3$ and $Rh_2$ OH the Proliferation of Prostate Cancer Cells

  • Kim Hyun-Sook;Lee Eun-Hee;Ko Sung-Ryong;Choi Kang-Ju;Park Jong-Hee;Im Dong-Soon
    • Archives of Pharmacal Research
    • /
    • v.27 no.4
    • /
    • pp.429-435
    • /
    • 2004
  • Ginseng has an anti-cancer effect in several cancer models. This study was to characterize active constituents of ginseng and their effects on proliferation of prostate cancer cell lines, LNCaP and PC3. Cell proliferation was measured by $[^3H]$thymidine incorporation, the intracellular calcium concentration by a dual-wavelength spectrophotometer system, effects on mite-gen-activated protein (MAP) kinases by Western blotting, and cell attachment and morphologic changes were observed under a microscope. Among 11 ginsenosides tested, ginsenosides $Rg_3\;and\;Rh_2$ inhibited the proliferation of prostate cancer cells. $EC_{50}s\;of\;Rg_3\;and\;Rh_2$ on PC3 cells were $8.4{\mu}M\;and\;5.5{\mu}M$, respectively, and $14.1{\mu}M\;and\;4.4{\mu}M$ on LNCaP cells, respectively. Both ginsenosides induced cell detachment and modulated three modules of MAP kinases activities differently in LNCaP and PC3 cells. These results suggest that ginsenosides $Rg_3\;and\;Rh_2$-induced cell detachment and inhibition of the proliferation of prostate cancer cells may be associated with modulation of three modules of MAP kinases.

Antioxidant Effects of Gamma-oryzanol on Human Prostate Cancer Cells

  • Klongpityapong, Papavadee;Supabphol, Roongtawan;Supabphol, Athikom
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5421-5425
    • /
    • 2013
  • Background: To assess the antioxidant effects of gamma-oryzanol on human prostate cancer cells. Materials and Methods: Cytotoxic activity of gamma-oryzanol on human DU145 and PC3 prostate cancer cells was determined by proliferation assay using 3-(4, 5-dimethylthiazol, 2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) reagent. mRNA levels of genes involved in the intracellular antioxidant system, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and glutathione reductase (GSR) were determined by reverse transcription-polymerase chain reaction (RT-PCR). Cancer cell lysates were used to measure lipid peroxidation using thiobarbituric acid reactive substance (TBARS). Glutathione contents of the cell lysates were estimated by the reaction between sulfhydryl group of 5, 5'-dithio (bis) nitrobenzoic acid (DTNB) to produce a yellow-color of 5-thio-2-nitrobenzoic acid using colorimetric assay. Catalase activity was also analysed by examining peroxidative function. Protein concentration was estimated by Bradford's assay. Results: All concentrations of gamma-oryzanol, 0.1-2.0mg/ml, significantly inhibited cell growth in a dose- and time-dependent fashion in both prostate cancer cell lines, DU145 and PC3. Gene expression of catalase in DU145 and PC3 exposed to gamma-orizanol at 0.5mg/ml for 14 days was down regulated, while mRNA of GPX was also down regulated in PC3. The MDA and glutathione levels including catalase activity in the cell lysates of DU145 and PC3 treated with gamma-oryzanol 0.1 and 0.5mg/ml were generally decreased. Conclusions: This study highlighted effects of gamma-oryzanol via the down-regulation of antioxidant genes, catalase and GPX, not cytotoxic roles. This might be interesting for adjuvant chemotherapy to make prostate cancer cells more sensitive to free radicals. It might be useful for the reduction of cytotoxic agents and cancer chemoprevention.

siRNA-mediated Silencing of Notch-1 Enhances Docetaxel Induced Mitotic Arrest and Apoptosis in PCa Cells

  • Ye, Qi-Fa;Zhang, Yi-Chuan;Peng, Xiao-Qing;Long, Zhi;Ming, Ying-Zi;He, Le-Ye
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2485-2489
    • /
    • 2012
  • Purpose: Notch is an important signaling pathway that regulates cell fate, stem cell maintenance and the initiation of differentiation in many tissues. It has been reported that activation of Notch-1 contributes to tumorigenesis. However, whether Notch signaling might have a role in chemoresistance of prostate cancer is unclear. This study aimed to investigate the effects of Notch-1 silencing on the sensitivity of prostate cancer cells to docetaxel treatment. Methods: siRNA against Notch-1 was transfected into PC-3 prostate cancer cells. Proliferation, apoptosis and cell cycle distribution were examined in the presence or absence of docetaxel by MTT and flow cytometry. Expression of $p21^{waf1/cip1}$ and Akt as well as activation of Akt in PC-3 cells were detected by Western blot and Real-time PCR. Results: Silencing of Notch-1 promoted docetaxel induced cell growth inhibition, apoptosis and cell cycle arrest in PC-3 cells. In addition, these effects were associated with increased $p21^{waf1/cip1}$ expression and decreased Akt expression and activation in PC-3 cells. Conclusion: Notch-1 promotes chemoresistance of prostate cancer and could be a potential therapeutic target.

Inhibitory Effects of Dunning Rat Prostate Tumor Fluid on Proliferation of the Metastatic MAT-LyLu Cell Line

  • Bugan, Ilknur;Altun, Seyhan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.831-836
    • /
    • 2015
  • Tumor fluid accumulation occurs in both human cancer and experimental tumor models. Solid tumors show a tendency to tumor fluid accumulation because of their anatomical and physiological features and this may be influenced by molecular factors. Fluid accumulation in the peri-tumor area also occurs in the Dunning model of rat prostate cancer as the tumor grows. In this study, the effects of tumor fluids that were obtained from Dunning prostate tumor-bearing Copenhagen rats on the strongly metastatic MAT-LyLu cell line were investigatedby examining the cell's migration and tumor fluid's toxicity and the kinetic parameters such as cell proliferation, mitotic index, and labelling index. In this research, tumor fluids were obtained from rats injected with $2{\times}10^5$ MAT-LyLu cells and treated with saline solution, and 200 nM tetrodotoxin (TTX), highly specific sodium channel blocker was used. Sterilized tumor fluids were added to medium of MAT-LyLu cells with the proportion of 20% in vitro. Consequently, it was demonstrated that Dunning rat prostate tumor fluid significantly inhibited proliferation (up to 50%), mitotic index, and labeling index of MAT-LyLu cells (up to 75%) (p<0.05) but stimulated the motility of the cells in vitro.