• Title/Summary/Keyword: Propylene Glycol Monomethyl Ether Acetate

Search Result 16, Processing Time 0.035 seconds

Distillation design and optimization of quaternary azeotropic mixtures for waste solvent recovery

  • Chaniago, Yus Donald;Lee, Moonyong
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.255-265
    • /
    • 2018
  • The huge amount of solvents used in the semi-conductor and display industry typically result in waste of valuable solvents which often form complex azeotropic mixtures. This study explored a recovery process of a quaternary waste solvent, comprising methyl 2-hydroxybutyrate, propylene glycol monomethyl ether acetate, ethyl lactate, and ethyl-3-ethoxy propionate. In this study, a novel shortcut column method with a graphical approach was exploited for the distillation column design of complex quaternary azeotropic mixtures. As a result, the proposed shortcut method and design procedure solved the complex separation paths successfully with less computational efforts while achieving all requirements for component purity.

Purification of Waste Organic Solvent Containing Propylene Glycol Monomethyl Ether Acetate (PGMEA) (PGMEA를 포함하는 폐유기용제의 정제)

  • Yoon, Kyoung-Jin;Lee, Woong-Mok;Kwon, Oh-Hoon;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.616-620
    • /
    • 2010
  • This study was performed to recycle Propylene Glycol Monomethyl Ether Acetate (PGMEA) from Liquid Crystal Display (LCD) industry emission as a waste organic solvent by using a multistage distillation column and tried to decide optimum reflux ratio. From the final experiment result, it was confirmed ; in case the sample A, the PGMEA purity is more than 98% and the moisture is less than 0.05%, on the other hand, in case the sample B, the PGMEA purity is more than 95% when the reflux ratio is 6 and the moisture is less than 0.01% (Refer to Table 1 for the contents of sample A and B). These values means fine level which can be adapted in the LCD manufacture, requiring more than 90% common purity of recycling level.

Process Optimization Using Regression Analysis of Distillation Processes for the Recovery of Propylene Glycol Monomethyl Ether Acetate (PGMEA) Containing Waste Organic Solvent (폐액 중 프로필 글리콜 모노메틸 에테르 아세테이트(PGMEA) 회수하는 증류공정에서 회귀분석을 이용한 공정 최적화)

  • Choi, Yong-Seok;Byun, Hun-Soo
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.181-192
    • /
    • 2015
  • The aim of this study is to obtain optimum process condition for using two tower distribution to recycle the waste Propylene Glycol Monomethyl Ether Acetate (PGMEA) that is formed after washing LCD. The optimum process condition for the content of PGMEA, which is dependent variable, at 1st distillation was calculated according to Bottom temperature (BTM temperature), Reflux amount, Feed amount, Feed temperatures, and the optimum process conditions and optimum factors for the content of PGMEA at 2nd distillation according to Bottom temperature (BTM temperature), Reflux amount, Feed amount, Feed temperatures. At 1st distillation, Reflux amount, Feed amount, and Feed temperature are significant variables. However, it is found that the BTM temperature range is not significant in the range of process condition used in this study. The optimum process conditions are based on $5700{\ell}$ of Feed amount, $2500{\ell}$ of Reflux amount, $165^{\circ}C$ of BTM temperature, and $130^{\circ}C$ of Feed temperature. For the this condition, the predicted content of PGMEA was calculated as 92.12~94.62%. Significant factors at 2nd distillation are Reflux amount, Feed amount, and BTM temperature. Multicollinearity is between Reflux amount and BTM temperature. BTM was omitted in the multiple regression equation because there is a strong positive correlation between Reflux amount and BTM temperature. Base on $199^{\circ}C$ of BTM temperature, The optimum process conditions are based on $4275{\ell}$ of Feed amount, $6200{\ell}$ of Reflux amount and $130^{\circ}C$ of Feed temperature. In this condition, the predicted content of PGMEA was calculated as 99.0~99.5%.

Preparation and Properties of PVP (poly-4-vinylphenol) Gate Insulation Film For Organic Thin Film Transistor (유기박막 트랜지스터용 PVP (poly-4-vinylphenol) 게이트 절연막의 제작과 특성)

  • Baek, In-Jae;Yoo, Jae-Hyouk;Lim, Hun-Seung;Chang, Ho-Jung;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.359-363
    • /
    • 2005
  • The organic insulation devices with MIM (metal-insulator-metal) structures as PVP gate insulation films were prepared for the application of organic thin film transistors (OTFT). The co-polymer organic insulation films were synthesized by using PVP(poly-4-vinylphenol) as solute and PGMEA (propylene glycol monomethyl ether acetate) as solvent. The cross-linked PVP insulation films were also prepared by addition of poly (melamine-co-formaldehyde) as thermal hardener. The leakage current of the cross-linked PVP films was found to be about 300 pA with low current noise. and showed better property in electrical properties as compared with the co-polymer PVP insulation films. In addition, cross-linked PVP insulation films showed better surface morphology (roughness), showing about 0.11${\~}$0.18 nF in capacitance for all PVP film samples.

  • PDF

Electrical Properties of PVP Gate Insulation Film on Polyethersulfone(PES) and Glass Substrates (Polyethersulfone(PES) 및 유리 기판위에 제작된 PVP 게이트 절연막의 전기적 특성)

  • Shin, Ik-Sup;Gong, Su-Cheol;Lim, Hun-Seoung;Park, Hyung-Ho;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.1
    • /
    • pp.27-31
    • /
    • 2007
  • The cpapcitors with MIM(metal-insulator-metal) structures using PVP gate insulation films were prepared for the application of flexible organic thin film transistors (OTFT). The co-polymer organic insulation films were synthesized by using PVP(poly-4-vinylphenol) as a solute and PGMEA(propylene glycol monomethyl ether acetate) as a solvent. The cross-linked PVP insulation films were also prepared by addition of poly(melamine-co-formaldehyde) as thermal hardener. The leakage current of the cross- linked PVP films was found to be about 1.3 nA on Al/PES(polyethersulfone) substrate, whereas, on ITO/ glass substrate was about 27.5 nA indicating improvement of the leakage current at Al/PES substrates. Also, the capacitances of all prepared samples on ITO/glass and Al/PES substrates w ere ranged from 1.0 to $1.2nF/cm^2$, showing very similar result with the calculated capacitance values.

  • PDF

Gate insulator Poly(4-vinylphenol) solvent concentration organic thin-film transistor characteristic effect (게이트 절연막 Poly(4-vinylphenol) 용제 비율에 따른 유기 박막 트랜지스터 특성 변화)

  • Jeun, Jun-Ho;Kim, Jung-Min;Lee, Dong-Hoon;Kim, Yong-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1700-1701
    • /
    • 2011
  • 본 논문에서는 게이트 절연막인 poly(4-vinylphenol) (PVP) 용제 농도 변화에 따른 유기 박막 트랜지스터를 제작하고 그 특성을 분석하였다. PVP는 propylene glycol monomethyl ether acetate(PGMEA) 와 poly melamine-co-formaldehyde (CLA)를 혼합하여 cross linked PVP를 만들어 사용하였다. Cross-liked PVP의 CLA 농도 비율을 각각 6 wt%, 9 wt%로 변화시켜 유기 박막 트랜지스터를 제작하고 소자의 전기적 특성을 분석 하였다.

  • PDF

유리 기판위에 제작된 PVP 게이트 절연막의 전기적 특성

  • Yang, Sin-Hyeok;Sin, Ik-Seop;Yu, Byeong-Cheol;Gong, Su-Cheol;Jang, Yeong-Cheol;Jang, Ho-Jeong
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.218-220
    • /
    • 2007
  • 유기박막트랜지스터(organic thin film transistor, OTFT)의 게이트 절연막으로 PVP(poly-4-vinylphenol) 물질을 이용하여 MIM (metal-insulator-metal) 구조의 캐패시터 소자를 제작하였다. 유기 절연층의 형성은 ITO/Glass 기판 위에 PVP를 용질로, PGMEA(propylene glycol monomethyl ether acetate)를 용매로 사용하였다. 또한 열경화성 수지인 poly(melamine-co-formaldehyde)를 사용하여 cross-linked PVP 절연막을 합성하여 스핀코팅법으로 소자를 형성하였다. 제작된 소자에 대해 절연막 두께에 따른 전기적 특성을 조사한 결과 300 nm 에서 500 nm로 두께가 증가할수록 누설전류는 10.69 nA 에서 0.1 nA 로 크게 감소하였다. 또한 캐패시터 소자의 정전용량은 300 nm 의 두께에서 1.05 nF 으로 500 nm 의 두께에서의 0.65 nF 과 비교하여 보다 양호한 특성이 나타났다.

  • PDF

Synthesis of Blue-green Naphthoxy, Chloro Derivative Zinc-phthalocyanines with LCD Requirements

  • Kumar, Rangaraju Satish;Min, Kyeong Su;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.30 no.3
    • /
    • pp.159-167
    • /
    • 2018
  • Here we designed and synthesized new zinc phthalocyanines and structures were fully confirmed by spectral and elemental analysis. All phthalocyanines have a very good solubility in industrial solvents like chloroform, dichloromethane, dimethyl sulfoxide, N,N-dimethyl formamide, propylene glycol monomethyl ether acetate (PGMEA), acetone, tetrahydrofuran and acetonitrile. UV-Visible absorption and transmittance in PGMEA showed that these dyes have suitable spectral properties for LCD color filters. By Triton X surfactant study, we confirmed that these dyes are not showing any aggregation in PGMEA. We dissolved the all phthalocyanines in LCD fabricating solvent (PGMEA), and all phthalocyanines showed more than 8 wt% of solubility. Finally, all of these results concluded that PCK1, PCK2 and PCK3 are fit for LCD green color filter.

Quantitative Exposure Assessment of Various Chemical Substances in a Wafer Fabrication Industry Facility

  • Park, Hyun-Hee;Jang, Jae-Kil;Shin, Jung-Ah
    • Safety and Health at Work
    • /
    • v.2 no.1
    • /
    • pp.39-51
    • /
    • 2011
  • Objectives: This study was designed to evaluate exposure levels of various chemicals used in wafer fabrication product lines in the semiconductor industry where work-related leukemia has occurred. Methods: The research focused on 9 representative wafer fabrication bays among a total of 25 bays in a semiconductor product line. We monitored the chemical substances categorized as human carcinogens with respect to leukemia as well as harmful chemicals used in the bays and substances with hematologic and reproductive toxicities to evaluate the overall health effect for semiconductor industry workers. With respect to monitoring, active and passive sampling techniques were introduced. Eight-hour long-term and 15-minute short-term sampling was conducted for the area as well as on personal samples. Results: The results of the measurements for each substance showed that benzene, toluene, xylene, n-butyl acetate, 2-methoxy-ethanol, 2-heptanone, ethylene glycol, sulfuric acid, and phosphoric acid were non-detectable (ND) in all samples. Arsine was either "ND" or it existed only in trace form in the bay air. The maximum exposure concentration of fluorides was approximately 0.17% of the Korea occupational exposure limits, with hydrofluoric acid at about 0.2%, hydrochloric acid 0.06%, nitric acid 0.05%, isopropyl alcohol 0.4%, and phosphine at about 2%. The maximum exposure concentration of propylene glycol monomethyl ether acetate (PGMEA) was 0.0870 ppm, representing only 0.1% or less than the American Industrial Hygiene Association recommended standard (100 ppm). Conclusion: Benzene, a known human carcinogen for leukemia, and arsine, a hematologic toxin, were not detected in wafer fabrication sites in this study. Among reproductive toxic substances, n-butyl acetate was not detected, but fluorides and PGMEA existed in small amounts in the air. This investigation was focused on the air-borne chemical concentrations only in regular working conditions. Unconditional exposures during spills and/or maintenance tasks and by-product chemicals were not included. Supplementary studies might be required.

Formation of PVP- Based Organic Insulating Layers and Fabrication of OTFTs (PVP-기반 유기 절연막 형성과 OTFT 제작)

  • Jang, Ji-Geun;Seo, Dong-Gyoon;Lim, Yong-Gyu
    • Korean Journal of Materials Research
    • /
    • v.16 no.5
    • /
    • pp.302-307
    • /
    • 2006
  • The formation and processing of organic insulators on the device performance have been studied in the fabrication of organic thin film transistors (OTFTs). The series of polyvinyls, poly-4-vinyl phenol(PVP) and polyvinyltoluene (PVT), were used as solutes and propylene glycol monomethyl ether acetate(PGMEA) as a solvent in the formation of organic insulators. The cross-linking of organic insulators was also attempted by adding the thermosetting material, poly (melamine-co-formaldehyde) as a hardener in the compound. The electrical characteristics measured in the metal-insulator-metal (MIM) structures showed that insulating properties of PVP layers were generally superior to those of PVT layers. Among the layers of PVP series: PVP(10 wt%) copolymer, 5 wt% cross-linked PVP(10 wt%), PVP(20 wt%) copolymer, 5 wt% cross-linked PVP(20 wt%) and 10 wt% cross-linked PVP(20 wt%), the 10 wt% cross-linked PVP(20 wt%) layer showed the lowest leakage current characteristics. Finally, inverted staggered OTFTs using the PVP(20 wt%) copolymer, 5 wt% cross-linked PVP(20 wt%) and 10 wt% cross-linked PVP(20 wt%) as gate insulators were fabricated on the polyether sulphone (PES) substrates. In our experiments, we could obtain the maximum field effect mobility of 0.31 $cm^2/Vs$ in the device from 5 wt% cross-linked PVP(20 wt%) and the highest on/off current ratio of $1.92{\times}10^5$ in the device from 10 wt% cross-linked PVP(20 wt%).