• Title/Summary/Keyword: Propulsive efficiency

Search Result 56, Processing Time 0.021 seconds

Solution of Unsteady Hydrofoil Problems by Discrete Vortex Method with Application to Fish Propulsion -2nd Report; Expension to 3-Dimensonal Problems- (특이점분포방식(特異點分布方式)에 의한 비정상수중익문제(非正常水中翼問題)의 해석(解析) -제2보(第2報) 3차원(次元) 문제(問題)로의 확장(擴張)-)

  • Hyoung-Tae,Kim;Chang-Sup,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.20 no.3
    • /
    • pp.1-16
    • /
    • 1983
  • In this paper a discrete-vortex-method(DVM) is presented for investigating the hydromechanics of the planar hydrofoils performing the undulatory motion which can be related to fish propulsion with carangiform mode. This is an extention of the authors previous work(1981) on the 2-dimensional hydrofoil. The applicability and accuracy of the present method are shown by means of comparing the calculated lifts and moments, and their distributions over the planforms with those in available references, for aspect ratio 1.0 and 2.0 rectangular hydrofoils and a swept-back hydrofoil of aspect ratio 2.0 from reduced frequency 0.1 to 0.5. The agreement is considered good. To assure the applicability of the DVM to the study of the propulsive performance of the oscillating planar hydrofoils, the convergence tests are performed. The mean thrust(in pure heave, this is wholly due to leading-edge suction), the mean power to maintain the motion and the hydromechanical efficiency are calculated for the rectangular hydrofoil of aspect ratio 8.0 and these are compared with the calculations by Chopra & Kambe(1977) and Lan(1979) for the same cases.

  • PDF

Study on the Prediction Method of Ship′s Powering Performance Using the Data Bank (데이터뱅크를 이용한 선박 저항추진성능 추정 기법 연구)

  • Eun-Chan Kim;Kuk-Jin Kang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.2
    • /
    • pp.68-74
    • /
    • 1995
  • The statistical analysis system is necessary to predict the resistance and powering performance quickly and precisely at the initial design stage. The authors propose the several functions of the performance prediction program and the structures of data bank. The program includes several series charts, regression coefficients and adapted regression analysis method based on the data bank to predict the resistance and propulsive coefficients. The calculation procedure to find out the principal dimensions and open-water efficiency of the optimum propeller is also included. The evaluation for the program and data bank is conducted by the arbitrarily selected 14 ship models. The results show good agreement with experiments within 5% mean prediction error.

  • PDF

Numerical Analysis on the Resistance and Propulsion Performances of High-Speed Amphibious Assault Vehicles (고속 상륙돌격장갑차의 저항 및 추진 성능에 관한 수치 분석)

  • Kim, Taehyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.84-98
    • /
    • 2021
  • The hydrodynamic characteristics of amphibious assault vehicles are investigated using commercial CFD code, STAR-CCM+. Resistance performances of a displacement-type vehicle and a semi-planing type vehicle are analyzed in calm water. The self-propelled model is also computed for the semi-planing type vehicle. All computations are performed using an overset mesh system and a RANS based flow-solver coupled with a two-degree of freedom equations of motion. A moving reference frame is applied to simulate revolutions of impeller blades for a waterjet propulsion system. Grid dependency tests are performed to evaluate discretization errors for the mesh systems. The numerical analysis results are compared with the experimental results obtained from model tests. It is shown that RANS is capable of investigating the resistance and self-propulsion characteristics of high-speed amphibious assault vehicles. It is also found that a fully covered side skirt, which is covering tracks, reduces resistance and stern trim, besides increasing propulsive efficiency.

A Study on the Green Ship Design for Ultra Large Container Ship (대형 컨테이너 운반선의 그린쉽 설계에 관한 연구)

  • Kim, Mingyu;Park, Dong-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.558-570
    • /
    • 2015
  • A study on the green ship design for Ultra Large Container Ship (ULCS, 18,000 TEU Class Container Ship) was performed based on the four step procedures of the initial design and hull form optimization to maximize economic and propulsive performance. The first, the design procedure for ULCS was surveyed with economic evaluation considering environmental rules and regulations. The second, the characteristics of single and twin skeg container ships were investigated in view of initial design and performances. The third, the hull form optimization for single and twin skeg ships with the same dimensions was conducted to improve the resistance and propulsive performances at design draught and speed by several variations and the results of the optimization were verified by numerical calculations of CFD and model test. The last, for the estimated operating profile of draught and speed, the hull forms of single and twin sked ships were optimized by CFD. From this study, the methodologies to optimize the hull form of ULCS were proposed with considerations during the green ship design and the improvement of the energy efficiency for the optimized hull forms was confirmed by the proposed formula of the total energy considering design conditions, operating profile and fuel oil consumption.

A Propeller Design Method with a New Blade Section : Applied to Container Ships (새로운 날개단면을 이용한 프로펠러 설계법 - 콘테이너선에 응용 -)

  • J.T. Lee;M.C. Kim;J.W. Ahn;S.H. Van;H.C. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.40-51
    • /
    • 1991
  • A Propeller design method using the newly developed blade section(KH18), which behaves better cavitation characteristics, is presented. Experimental results for two-dimensional foil sections show that the lift-drag curve and the cavitation-free bucket diagram of the new blade section are wider comparing to those of the existion NACA sections. This characteristic of the new section is particularly important for marine propeller applications since angle of attack variation of the propeller blade operating behind a non-uniform ship's wake is relatively large. A lifting surface theory is used for the design of a propeller with the developed section for a 2700 TEU container ship. Since the most suitable chordwise loading shape is not known a priori, chordwise loading shape is chosen as a design parameter. Five propellers with different chordwise loading shapes and different foil sections are designed and tested in the towing tank and cavitation tunnel at KRISO. It is observed by a series of extensive model tsets that the propeller(KP197) having the chordwise loading shape, which has less leading edge loading at the inner radii and more leading edge loading at the outer radii of 0.7 radius, has higher propulsive efficiency and better cavitation characteristics. The KP197 propeller shows 1% higher efficiency, 30% cavitation volume reduction and 9% reduction of fluctuating pressure level comparing to the propeller with an NACA section. More appreciable efficiency gain for the new blade section propeller would be expected by reduction of expanded blade area considering the better cavitation characteristics of the new blade section.

  • PDF

Design of a PID-type Autopilot Concerned with Propulsive Energy of Ship (선박의 추진에너지를 고려한 PID형 자동조타기 설계)

  • Ahn, Jong-Kap;Lee, Chang-Ho;Lee, Yun-Hyung;Choi, Jae-Jun;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.33 no.6
    • /
    • pp.437-442
    • /
    • 2009
  • The PID controller type autopilot is applied to support shipmaneuvering for course-keeping and heading control. A control constants of autopilot system should be evaluated by promoting energy loss (fuel consumption) from the view point of economic efficiency of the ship. This paper is obtained control constants of autopilot system from the RCGA pursued the minimum energy loss. In addition, the controller which is designed involves a constrained optimization problem. The performance of the proposed method is demonstrated through a set of simulation.

A Study on the Speed Performance of a Medium Patrol Boat using CFD (CFD를 이용한 중형 경비정의 속도성능 평가)

  • Park, Dong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.38 no.6
    • /
    • pp.585-591
    • /
    • 2014
  • The primary objective of the current work is to predict speed performance of the medium patrol boat over $F_N=0.5$ employing experimental materials based on the CFD before model tests. In other words, the predicted brake powers according to ship speeds are assessed satisfying the main engine capacity. The subject ships are selected the two different stern hull forms. The flow computation are conducted considering free surface and dynamic trim using a commercial CFD code(STAR-CCM+). The resistances of the bare-hull are obtained from CFD. Wave patterns, pressures and limiting streamlines on the hull and velocity distribution in the propeller plane for the two hull forms are compared using CFD. The effective powers of the object ships are assessed based on CFD. Resistance increase according to the attached appendages and quasi-propulsive efficiency are employed the experimental datas. Speed performance prediction method concerning high speed vessels like a medium patrol boat is developed employing CFD and experimental data.

Prediction of fishing boat performance using computational fluid dynamics (전산 유체 해석을 이용한 어선의 속도 성능 추정)

  • Kim, In-Seob;Park, Dong-Woo;Lee, Sang-Bong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.574-579
    • /
    • 2016
  • Grid systems used in previous studies were determined to be valid only if the length between the perpendiculars in a model ship was in the range of 6-8 m, and the maximum dynamic trim angle was smaller than $1^{\circ}$. The application of the grid system to a small fishing boat can create numerical instability because the dynamic trim of small boats is generally larger than $3^{\circ}$, and their Froude numbers are in the range of 0.3-0.8. In the present study, resistances of a small fishing boat were stably obtained by reducing the length between the center of buoyancy and the inlet boundary of the numerical domain, and by refining grid cells vertically in a region that would be swept by a free surface. The effective power of the small fishing boat was predicted based on the ITTC-1978 two-dimensional analysis. By using the results of previous towing tank tests, the coefficient of quasi-propulsive efficiency and the brake horsepower at a design draft were calculated.

A Study on Propulsion Performance of Underwater Ram-Jet with Optimized Nozzle Configuration (최적 노즐형상을 갖는 수중램제트의 추진성능에 관한 연구)

  • Kang, H.K.;Kim, Y.T.;Lee, Y.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.42-52
    • /
    • 1997
  • The basic principle of underwater ram-jet as a unique marine propulsion concept showing vary high cruise speed range(e. g. 80-100 knots) is the thrust production by the transfer of the potential energy of compressed gas to the operating liquid through kinetic mixing process. This paper is aimed to investigate the propulsive efficiency of the nozzle flow in underwater ram-jet at the speed of 80 knots for the buried type vessel. The basic assumption of the theoretical analysis is that mixture of water and air can be treated as incompressible gas. For an optimized nozzle configuration obtained from the performance analysis, preliminary data for performance evaluation are obtained and effects of nozzle inner wall friction, ambient temperature, ambient pressure, water density, gas velocity, bubble radius, flow velocity, diffuser area ratio, mass flow ratio and water velocity gradient are investigated.

  • PDF

Hull-form optimization of KSUEZMAX to enhance resistance performance

  • Park, Jong-Heon;Choi, Jung-Eun;Chun, Ho-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.100-114
    • /
    • 2015
  • This paper deploys optimization techniques to obtain the optimum hull form of KSUEZMAX at the conditions of full-load draft and design speed. The processes have been carried out using a RaPID-HOP program. The bow and the stern hull-forms are optimized separately without altering neither, and the resulting versions of the two are then combined. Objective functions are the minimum values of wave-making and viscous pressure resistance coefficients for the bow and stern. Parametric modification functions for the bow hull-form variation are SAC shape, section shape (U-V type, DLWL type), bulb shape (bulb height and size); and those for the stern are SAC and section shape (U-V type, DLWL type). WAVIS version 1.3 code is used for the potential and the viscous-flow solver. Prior to the optimization, a parametric study has been conducted to observe the effects of design parameters on the objective functions. SQP has been applied for the optimization algorithm. The model tests have been conducted at a towing tank to evaluate the resistance performance of the optimized hull-form. It has been noted that the optimized hull-form brings 2.4% and 6.8% reduction in total and residual resistance coefficients compared to those of the original hull-form. The propulsive efficiency increases by 2.0% and the delivered power is reduced 3.7%, whereas the propeller rotating speed increases slightly by 0.41 rpm.