• Title/Summary/Keyword: Propulsion motor

Search Result 678, Processing Time 0.023 seconds

Power Beaming and Its Application to Aerospace Propulsion

  • Komurasaki, Kimiya
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.881-885
    • /
    • 2008
  • Wireless energy transmission system to a Micro Aerial Vehicle is now under development. A 5.8 GHz microwave phased array antenna and rectenna array receiver have been developed. An electric motor on a circling MAV model was driven by the transmitted power. In addition, 140GHz millimeter-waves of up to 1MW was beamed to a "Microwave Rocket" and its thrusting has been successfully demonstrated.

  • PDF

Design and Characteristic Analysis of Hybrid-Type Levitation and Propulsion Device for High-Speed Maglev Vehicle (초고속 자기부상열차를 위한 하이브리드형 부상 추진 시스템의 설계 및 특성해석)

  • Cho, Han-Wook;Kim, Chang-Hyun;Han, Hyung-Suk;Lee, Jong-Min;Kim, Bong-Sup;Kim, Dong-Sung;Lee, Young-Sin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.715-721
    • /
    • 2010
  • This paper deals with the design and characteristic analysis of electro-magnet/permanent-magnet (EM-PM) hybrid levitation and propulsion device for high-speed magnetically levitated (maglev) vehicle. The machine requires PMs with high coercive force in order to levitate the vehicle by only PMs, and propulsion force is supplied by long-stator linear synchronous motor (LSM). The advantages of this configuration are an increasing levitation airgap length and decreasing total weight of the vehicle, because of the zero-power levitation control. Several design considerations such as machine structure, manufacturing, and control strategy are described. Moreover, the levitation and propulsion device for high-speed maglev vehicle has been designed and analyzed usign the electromagnetic circuit and FE analysis. In order to verify the design scheme and feasibility of maglev application, 3-DOF static force test set is implemented and tested. The obtained experimental data using the static tester shows the validity of the design and analysis approaches.

Development of Large Propulsion Motor Bearings Considering Slope Conditions (경사조건을 고려한 대용량 추진 전동기용 베어링 개발에 대한 연구)

  • Oh, Seung Tae;Choi, Jin Woo;Kang, Byeng Hi;Kim, Jin;Choi, Seong Pil;Bin, Jae Goo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.241-248
    • /
    • 2013
  • In this study, bearings were developed for a high-power propulsion motor operating in inclined operation conditions through a simulation and similitude-experimental methods using commercial rotating machinery dynamics analysis software. The developed journal bearing is electrically insulated and has low thermal conductivity because each part is connected with 2-4 -mm-thick epoxy plates. To realize an appropriate oil thickness, an oil lift system is adopted, and a half separated structure is applied to ensure the feasibility of maintaining very heavy components. This study discusses some of the key design aspects of sleeve bearing design for high-torque and low-speed propulsion motor applications. Furthermore, the conditions of variable slope tests are examined to prevent oil leakage from the bearing lip seal on the test rig.

Performance Analysis of a Five-leg Inverter for the Train Propulsion System (철도차량 추진시스템을 위한 FLI(Five-leg Inverter)의 성능 분석)

  • Lim, Young-Seol;Shin, Duck-Ho;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.43-54
    • /
    • 2017
  • This paper analyzes the performance of two three-leg inverters and a five-leg inverter and proposes the optimal operation conditions in applying the five-leg inverter for the train propulsion system. The five-leg inverter offers a saving of two switches compared with the standard two three-leg inverters and it is possible to control two three-phase motors independently by using a control board. All of these features lead to a potential reduction in capital cost and miniaturization of system. In this paper, first, the analysis of the existing motor control method and PWM method for two-traction motor drive of urban railway is implemented. Next, the operation principle and performance of five-leg inverter is introduced. Through the analysis, when it applies the same motor control method and the same PWM method for three-leg inverter and five-leg inverter, the characteristic of motor's speed and torque is compared.

An Evaluation of Structural Characteristics and Integrity for Rocket Motor Case according to Dome Types (돔 형상에 따른 연소관의 구조 특성 및 안전성 평가)

  • Ko, Hee-Young;Shin, Kwang-Bok;Kim, Won-Hoon;Koo, Song-Hoe
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.257-262
    • /
    • 2009
  • Elastic-Plastic structural analysis was performed to evaluate structural characteristic and integrity for rocket motor case of solid propulsion system. The structural analyses were compared and evaluated using the simplified 2-D axisymmetric model and 3-D full model for rocket motor case with torispherical dome type. And pre-tension load for bolt model was considered in structural analysis. The results of displacement and stress for the simplified 2-D axisymmetric model and 3-D full model were in an good agreement with each other. Therefore, the simplified 2-D axisymmetric model for rocket motor case was recommended to verify quickly the structural integrity and save the modeling and calculating time in initial design stage. Also, the structural characteristic and integrity for rocket motor case according to 5 dome types was evaluated to select the optimal dome shape.

  • PDF

Analysis of Combined Motor and Electronic Speed Control Efficiency Using Contour Plots (등치선도를 이용한 모터와 전자 변속기 통합 효율 분석)

  • Seokhwan Lee;Hyeonsu Hwang;Hong-Su Nam;Hak-Tae Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.2
    • /
    • pp.214-220
    • /
    • 2023
  • Because there exist a region in the rotational speed and torque map that the a particular combination of a motor and an ESC (Electronic Speed Control) can maintain its peak efficiency, identifying this region is important for designing an efficient system. Firstly the accuracy of the measurement device is verified using the published propeller measurement data. And then, the combined motor-ESC efficiencies of an individual propeller are measured at a wide range of rotational speeds. With measurements obtained from a large number of different propellers, efficiency contours are obtained. It is shown that there exist a significant difference between the measured combined efficiency and the motor efficiency computed using a simple model. In addition, with the same motor, the combined efficiency can have a meaningful variation depending on the model of the ESC. The efficiency contours derived from this study will be useful for the design and optimization of electric propulsion systems of an aircraft where propulsion efficiency is critical.

A Study on Improvement of Operation Efficiency of Magnetic Levitation Train Using Linear Induction Motor

  • Park, Sang Uk;Zun, Chan Yong;Park, Doh-Young;Lim, Jaewon;Mok, Hyung Soo
    • International Journal of Railway
    • /
    • v.9 no.2
    • /
    • pp.41-45
    • /
    • 2016
  • In this paper, a study on the efficiency improvement of the magnetic levitation train using the LIM (Linear Induction Motor) was presented. The maglev train has the advantage of being environmentally friendly since much less noise and dust is produced. However, due to structural limitation, compared to a rotating induction motor, linear induction motor, the main propulsion engine of the maglev train has a relatively greater air gap and hence has the lower operation efficiency. In this paper, the relationship between the operating condition of the train and the slip frequency has been investigated to find out the optimum slip frequency that might improve the efficiency of the magnetic levitation train with linear induction motor. The slip frequency is variable during the operation by this relationship only within a range that does not affect the levitation system of the train. After that, the comparison of the efficiency between the conventional control method with the slip frequency fixed at 13.5[Hz] and the proposed method with the slip frequency variable from 9.5[Hz] to 6.5[Hz] has been conducted by simulation using Simplorer. Experiments of 19.5[ton] magnetic levitation trains owned by Korea Institute of Machinery and Materials were carried out to verify the simulation results.

Thermal Analysis for Solid Rocket Motor exposed to Fast Cook Off (급속가열 상황에 있는 고체 추진기관에 대한 열해석)

  • Doh, Young-Dae;Yoo, Ji-Chang;Kim, Chang-Kee;Lee, Do-Hyung;Ham, Hee-Cheol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.196-199
    • /
    • 2009
  • The most important thing is to analyze the Fast Cook Off problem of the solid motor case exposed to direct flame is a heat transfer analysis. Heat causes degradation and ignition of the propellant. To archive an acceptable reaction level in Fast Cook Off, the rocket motor case generally must fail structurally prior to propellant ignition. We investigate the responses of the solid motor case exposed to Fast Cook Off by using finite element method for the thermal analysis.

  • PDF

Torsional Vibration Phenomenon due to Pulse Torque of Variable Speed Induction Motor on Rotating Systems (가변 속도 유도 전동기에서 발생한 펄스 토크에 의한 회전축계의 비틀림진동 현상)

  • Lee, Donchool;Vuong, QuangDao;Nam, Taekkun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.6
    • /
    • pp.414-419
    • /
    • 2015
  • Recently, commercial ships and other specialized vessels with electric propulsion system employ variable speed induction motor as its prime mover. The wide application of electrical motors also includes being the main drive system in most industrial machineries. However, during its start-up, shutdown, and brake switch operation, excessive torque variation are generated. As such, flexible coupling are installed in order to reduce the transmitted torque fluctuation to the driven side. In this paper, the pulse torque generated by an variable speed induction motor was analyzed theoretically and through measurement of torsional vibration. Induction motor with inverter on marine propulsion system and industrial compressor were used as experimental subjects. The study confirmed that pulse torque are generated regardless of motor speed and interpreted as a vibration source of the whole system. Results presented herein can be adopted as the basis in future amendment of inspection classifying body regulations.

Preliminary Design of High Altitude Test Facility for Kick Motor of KSLV-I Development (KSLV-I 킥모터용 고공환경모사 시험설비 구축을 위한 기본설계)

  • Kim, Yong-Wook;Lee, Jung-Ho;Yu, Byung-Il;Kim, Sang-Heon;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.180-187
    • /
    • 2007
  • Korea Aerospace Research Institute(KARI) is developing Korea Space Launch Vehicle(KSLV). KSLV-I is composed of liquid propulsion system for the first stage and apogee kick motor as the second stage. Kick motor has a high expansion ratio nozzle and its starting altitude is 300km high. To verify the performance of kick motor, high altitude test facility (HATF) to simulate its operating condition is necessary. This paper contains preliminary design for construction of HATF.

  • PDF