• Title/Summary/Keyword: Proposed model

Search Result 33,547, Processing Time 0.065 seconds

Overlay Multicast Network for IPTV Service using Bandwidth Adaptive Distributed Streaming Scheme (대역폭 적응형 분산 스트리밍 기법을 이용한 IPTV 서비스용 오버레이 멀티캐스트 네트워크)

  • Park, Eun-Yong;Liu, Jing;Han, Sun-Young;Kim, Chin-Chol;Kang, Sang-Ug
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.12
    • /
    • pp.1141-1153
    • /
    • 2010
  • This paper introduces ONLIS(Overlay Multicast Network for Live IPTV Service), a novel overlay multicast network optimized to deliver live broadcast IPTV stream. We analyzed IPTV reference model of ITU-T IPTV standardization group in terms of network and stream delivery from the source networks to the customer networks. Based on the analysis, we divide IPTV reference model into 3 networks; source network, core network and access network, ION(Infrastructure-based Overlay Multicast Network) is employed for the source and core networks and PON(P2P-based Overlay Multicast Network) is applied to the access networks. ION provides an efficient, reliable and stable stream distribution with very negligible delay while PON provides bandwidth efficient and cost effective streaming with a little tolerable delay. The most important challenge in live P2P streaming is to reduce end-to-end delay without sacrificing stream quality. Actually, there is always a trade-off between delay & stream quality in conventional live P2P streaming system. To solve this problem, we propose two approaches. Firstly, we propose DSPT(Distributed Streaming P2P Tree) which takes advantage of combinational overlay multicasting. In DSPT, a peer doesn't fully rely on SP(Supplying Peer) to get the live stream, but it cooperates with its local ANR(Access Network Relay) to reduce delay and improve stream quality. When RP detects bandwidth drop in SP, it immediately switches the connection from SP to ANR and continues to receive stream without any packet loss. DSPT uses distributed P2P streaming technique to let the peer share the stream to the extent of its available bandwidth. This means, if RP can't receive the whole stream from SP due to lack of SP's uploading bandwidth, then it receives only partial stream from SP and the rest from the ANR. The proposed distributed P2P streaming improves P2P networking efficiency.

The Influence of Online Social Networking on Individual Virtual Competence and Task Performance in Organizations (온라인 네트워킹 활동이 가상협업 역량 및 업무성과에 미치는 영향)

  • Suh, A-Young;Shin, Kyung-Shik
    • Asia pacific journal of information systems
    • /
    • v.22 no.2
    • /
    • pp.39-69
    • /
    • 2012
  • With the advent of communication technologies including electronic collaborative tools and conferencing systems provided over the Internet, virtual collaboration is becoming increasingly common in organizations. Virtual collaboration refers to an environment in which the people working together are interdependent in their tasks, share responsibility for outcomes, are geographically dispersed, and rely on mediated rather than face-to face, communication to produce an outcome. Research suggests that new sets of individual skill, knowledge, and ability (SKAs) are required to perform effectively in today's virtualized workplace, which is labeled as individual virtual competence. It is also argued that use of online social networking sites may influence not only individuals' daily lives but also their capability to manage their work-related relationships in organizations, which in turn leads to better performance. The existing research regarding (1) the relationship between virtual competence and task performance and (2) the relationship between online networking and task performance has been conducted based on different theoretical perspectives so that little is known about how online social networking and virtual competence interplay to predict individuals' task performance. To fill this gap, this study raises the following research questions: (1) What is the individual virtual competence required for better adjustment to the virtual collaboration environment? (2) How does online networking via diverse social network service sites influence individuals' task performance in organizations? (3) How do the joint effects of individual virtual competence and online networking influence task performance? To address these research questions, we first draw on the prior literature and derive four dimensions of individual virtual competence that are related with an individual's self-concept, knowledge and ability. Computer self-efficacy is defined as the extent to which an individual beliefs in his or her ability to use computer technology broadly. Remotework self-efficacy is defined as the extent to which an individual beliefs in his or her ability to work and perform joint tasks with others in virtual settings. Virtual media skill is defined as the degree of confidence of individuals to function in their work role without face-to-face interactions. Virtual social skill is an individual's skill level in using technologies to communicate in virtual settings to their full potential. It should be noted that the concept of virtual social skill is different from the self-efficacy and captures an individual's cognition-based ability to build social relationships with others in virtual settings. Next, we discuss how online networking influences both individual virtual competence and task performance based on the social network theory and the social learning theory. We argue that online networking may enhance individuals' capability in expanding their social networks with low costs. We also argue that online networking may enable individuals to learn the necessary skills regarding how they use technological functions, communicate with others, and share information and make social relations using the technical functions provided by electronic media, consequently increasing individual virtual competence. To examine the relationships among online networking, virtual competence, and task performance, we developed research models (the mediation, interaction, and additive models, respectively) by integrating the social network theory and the social learning theory. Using data from 112 employees of a virtualized company, we tested the proposed research models. The results of analysis partly support the mediation model in that online social networking positively influences individuals' computer self-efficacy, virtual social skill, and virtual media skill, which are key predictors of individuals' task performance. Furthermore, the results of the analysis partly support the interaction model in that the level of remotework self-efficacy moderates the relationship between online social networking and task performance. The results paint a picture of people adjusting to virtual collaboration that constrains and enables their task performance. This study contributes to research and practice. First, we suggest a shift of research focus to the individual level when examining virtual phenomena and theorize that online social networking can enhance individual virtual competence in some aspects. Second, we replicate and advance the prior competence literature by linking each component of virtual competence and objective task performance. The results of this study provide useful insights into how human resource responsibilities assess employees' weakness and strength when they organize virtualized groups or projects. Furthermore, it provides managers with insights into the kinds of development or training programs that they can engage in with their employees to advance their ability to undertake virtual work.

  • PDF

Optimization of Support Vector Machines for Financial Forecasting (재무예측을 위한 Support Vector Machine의 최적화)

  • Kim, Kyoung-Jae;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.241-254
    • /
    • 2011
  • Financial time-series forecasting is one of the most important issues because it is essential for the risk management of financial institutions. Therefore, researchers have tried to forecast financial time-series using various data mining techniques such as regression, artificial neural networks, decision trees, k-nearest neighbor etc. Recently, support vector machines (SVMs) are popularly applied to this research area because they have advantages that they don't require huge training data and have low possibility of overfitting. However, a user must determine several design factors by heuristics in order to use SVM. For example, the selection of appropriate kernel function and its parameters and proper feature subset selection are major design factors of SVM. Other than these factors, the proper selection of instance subset may also improve the forecasting performance of SVM by eliminating irrelevant and distorting training instances. Nonetheless, there have been few studies that have applied instance selection to SVM, especially in the domain of stock market prediction. Instance selection tries to choose proper instance subsets from original training data. It may be considered as a method of knowledge refinement and it maintains the instance-base. This study proposes the novel instance selection algorithm for SVMs. The proposed technique in this study uses genetic algorithm (GA) to optimize instance selection process with parameter optimization simultaneously. We call the model as ISVM (SVM with Instance selection) in this study. Experiments on stock market data are implemented using ISVM. In this study, the GA searches for optimal or near-optimal values of kernel parameters and relevant instances for SVMs. This study needs two sets of parameters in chromosomes in GA setting : The codes for kernel parameters and for instance selection. For the controlling parameters of the GA search, the population size is set at 50 organisms and the value of the crossover rate is set at 0.7 while the mutation rate is 0.1. As the stopping condition, 50 generations are permitted. The application data used in this study consists of technical indicators and the direction of change in the daily Korea stock price index (KOSPI). The total number of samples is 2218 trading days. We separate the whole data into three subsets as training, test, hold-out data set. The number of data in each subset is 1056, 581, 581 respectively. This study compares ISVM to several comparative models including logistic regression (logit), backpropagation neural networks (ANN), nearest neighbor (1-NN), conventional SVM (SVM) and SVM with the optimized parameters (PSVM). In especial, PSVM uses optimized kernel parameters by the genetic algorithm. The experimental results show that ISVM outperforms 1-NN by 15.32%, ANN by 6.89%, Logit and SVM by 5.34%, and PSVM by 4.82% for the holdout data. For ISVM, only 556 data from 1056 original training data are used to produce the result. In addition, the two-sample test for proportions is used to examine whether ISVM significantly outperforms other comparative models. The results indicate that ISVM outperforms ANN and 1-NN at the 1% statistical significance level. In addition, ISVM performs better than Logit, SVM and PSVM at the 5% statistical significance level.

Improving Bidirectional LSTM-CRF model Of Sequence Tagging by using Ontology knowledge based feature (온톨로지 지식 기반 특성치를 활용한 Bidirectional LSTM-CRF 모델의 시퀀스 태깅 성능 향상에 관한 연구)

  • Jin, Seunghee;Jang, Heewon;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.253-266
    • /
    • 2018
  • This paper proposes a methodology applying sequence tagging methodology to improve the performance of NER(Named Entity Recognition) used in QA system. In order to retrieve the correct answers stored in the database, it is necessary to switch the user's query into a language of the database such as SQL(Structured Query Language). Then, the computer can recognize the language of the user. This is the process of identifying the class or data name contained in the database. The method of retrieving the words contained in the query in the existing database and recognizing the object does not identify the homophone and the word phrases because it does not consider the context of the user's query. If there are multiple search results, all of them are returned as a result, so there can be many interpretations on the query and the time complexity for the calculation becomes large. To overcome these, this study aims to solve this problem by reflecting the contextual meaning of the query using Bidirectional LSTM-CRF. Also we tried to solve the disadvantages of the neural network model which can't identify the untrained words by using ontology knowledge based feature. Experiments were conducted on the ontology knowledge base of music domain and the performance was evaluated. In order to accurately evaluate the performance of the L-Bidirectional LSTM-CRF proposed in this study, we experimented with converting the words included in the learned query into untrained words in order to test whether the words were included in the database but correctly identified the untrained words. As a result, it was possible to recognize objects considering the context and can recognize the untrained words without re-training the L-Bidirectional LSTM-CRF mode, and it is confirmed that the performance of the object recognition as a whole is improved.

Improving the Accuracy of Document Classification by Learning Heterogeneity (이질성 학습을 통한 문서 분류의 정확성 향상 기법)

  • Wong, William Xiu Shun;Hyun, Yoonjin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.21-44
    • /
    • 2018
  • In recent years, the rapid development of internet technology and the popularization of smart devices have resulted in massive amounts of text data. Those text data were produced and distributed through various media platforms such as World Wide Web, Internet news feeds, microblog, and social media. However, this enormous amount of easily obtained information is lack of organization. Therefore, this problem has raised the interest of many researchers in order to manage this huge amount of information. Further, this problem also required professionals that are capable of classifying relevant information and hence text classification is introduced. Text classification is a challenging task in modern data analysis, which it needs to assign a text document into one or more predefined categories or classes. In text classification field, there are different kinds of techniques available such as K-Nearest Neighbor, Naïve Bayes Algorithm, Support Vector Machine, Decision Tree, and Artificial Neural Network. However, while dealing with huge amount of text data, model performance and accuracy becomes a challenge. According to the type of words used in the corpus and type of features created for classification, the performance of a text classification model can be varied. Most of the attempts are been made based on proposing a new algorithm or modifying an existing algorithm. This kind of research can be said already reached their certain limitations for further improvements. In this study, aside from proposing a new algorithm or modifying the algorithm, we focus on searching a way to modify the use of data. It is widely known that classifier performance is influenced by the quality of training data upon which this classifier is built. The real world datasets in most of the time contain noise, or in other words noisy data, these can actually affect the decision made by the classifiers built from these data. In this study, we consider that the data from different domains, which is heterogeneous data might have the characteristics of noise which can be utilized in the classification process. In order to build the classifier, machine learning algorithm is performed based on the assumption that the characteristics of training data and target data are the same or very similar to each other. However, in the case of unstructured data such as text, the features are determined according to the vocabularies included in the document. If the viewpoints of the learning data and target data are different, the features may be appearing different between these two data. In this study, we attempt to improve the classification accuracy by strengthening the robustness of the document classifier through artificially injecting the noise into the process of constructing the document classifier. With data coming from various kind of sources, these data are likely formatted differently. These cause difficulties for traditional machine learning algorithms because they are not developed to recognize different type of data representation at one time and to put them together in same generalization. Therefore, in order to utilize heterogeneous data in the learning process of document classifier, we apply semi-supervised learning in our study. However, unlabeled data might have the possibility to degrade the performance of the document classifier. Therefore, we further proposed a method called Rule Selection-Based Ensemble Semi-Supervised Learning Algorithm (RSESLA) to select only the documents that contributing to the accuracy improvement of the classifier. RSESLA creates multiple views by manipulating the features using different types of classification models and different types of heterogeneous data. The most confident classification rules will be selected and applied for the final decision making. In this paper, three different types of real-world data sources were used, which are news, twitter and blogs.

Software Reliability Growth Modeling in the Testing Phase with an Outlier Stage (하나의 이상구간을 가지는 테스팅 단계에서의 소프트웨어 신뢰도 성장 모형화)

  • Park, Man-Gon;Jung, Eun-Yi
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.10
    • /
    • pp.2575-2583
    • /
    • 1998
  • The productionof the highly relible softwae systems and theirs performance evaluation hae become important interests in the software industry. The software evaluation has been mainly carried out in ternns of both reliability and performance of software system. Software reliability is the probability that no software error occurs for a fixed time interval during software testing phase. These theoretical software reliability models are sometimes unsuitable for the practical testing phase in which a software error at a certain testing stage occurs by causes of the imperfect debugging, abnornal software correction, and so on. Such a certatin software testing stage needs to be considered as an outlying stage. And we can assume that the software reliability does not improve by means of muisance factor in this outlying testing stage. In this paper, we discuss Bavesian software reliability growth modeling and estimation procedure in the presence of an imidentitied outlying software testing stage by the modification of Jehnski Moranda. Also we derive the Bayes estimaters of the software reliability panmeters by the assumption of prior information under the squared error los function. In addition, we evaluate the proposed software reliability growth model with an unidentified outlying stage in an exchangeable model according to the values of nuisance paramether using the accuracy, bias, trend, noise metries as the quantilative evaluation criteria through the compater simulation.

  • PDF

Development of Multimedia Annotation and Retrieval System using MPEG-7 based Semantic Metadata Model (MPEG-7 기반 의미적 메타데이터 모델을 이용한 멀티미디어 주석 및 검색 시스템의 개발)

  • An, Hyoung-Geun;Koh, Jae-Jin
    • The KIPS Transactions:PartD
    • /
    • v.14D no.6
    • /
    • pp.573-584
    • /
    • 2007
  • As multimedia information recently increases fast, various types of retrieval of multimedia data are becoming issues of great importance. For the efficient multimedia data processing, semantics based retrieval techniques are required that can extract the meaning contents of multimedia data. Existing retrieval methods of multimedia data are annotation-based retrieval, feature-based retrieval and annotation and feature integration based retrieval. These systems take annotator a lot of efforts and time and we should perform complicated calculation for feature extraction. In addition. created data have shortcomings that we should go through static search that do not change. Also, user-friendly and semantic searching techniques are not supported. This paper proposes to develop S-MARS(Semantic Metadata-based Multimedia Annotation and Retrieval System) which can represent and extract multimedia data efficiently using MPEG-7. The system provides a graphical user interface for annotating, searching, and browsing multimedia data. It is implemented on the basis of the semantic metadata model to represent multimedia information. The semantic metadata about multimedia data is organized on the basis of multimedia description schema using XML schema that basically comply with the MPEG-7 standard. In conclusion. the proposed scheme can be easily implemented on any multimedia platforms supporting XML technology. It can be utilized to enable efficient semantic metadata sharing between systems, and it will contribute to improving the retrieval correctness and the user's satisfaction on embedding based multimedia retrieval algorithm method.

Factors Affecting Intention to Experience of 6th Industry (6차 산업 체험 의향에 영향을 미치는 요인에 관한 연구)

  • Choi, Yang-ae
    • Journal of Venture Innovation
    • /
    • v.3 no.1
    • /
    • pp.117-142
    • /
    • 2020
  • The purpose of this study is to explore the factors affecting the 6th industry experience by Schmitt experience model. The newly introduced variables are the cognitive experience, emotional experience, and social experience that are reconstructed based on Schmitt's experience theory and gender, family as a moderrating variable and trust as a mediation variable. In addition to experience intention. The hypothesis was set as follows. the experience factors that are the cognitive factor, the emotional factor, and the social factor will have a positive(+) influence on the intention to experience. Mooring factors will have a negative(-) effect on intention to experience. For statistical analysis, SPSS 24 and AMOS 23 statistical packages were used to test the research hypothesis. The research was based on 320 questionnaire data and tested by 314 valid responses were analyzed. As a result of the research, First, cognitive, emotional, and social factors had positive(+) effects on experience intention. Among the factors that directly affect the experience intention, the magnitude of influence appeared in the order of cognitive factors > social factors > emotional factors > mooring factors. Second, mooring factors have negative(-) effects on experience intention. Third, Trust has been partially influenced by factors of attraction, cognitive, emotional, and social. Fourth, there are significant statistical differences between men and women in cognitive and mooring factors in the path differences. Fifth, Social factors and mooring factors differed significantly in the composition of the household. Social factors with significant differences in path analysis have also been statistically demonstrated. The results of this study are academically verified that the cognitive, emotional, and social factors have an important influence on the experience intention in the 6th industry experience and the Schmitt's experience model proposed in this study is useful framework of analysis. In practical terms, it could provide implications for what factors should be strategically and marketingly focused to activate the 6th industry experience.

Developing and Applying the Questionnaire to Measure Science Core Competencies Based on the 2015 Revised National Science Curriculum (2015 개정 과학과 교육과정에 기초한 과학과 핵심역량 조사 문항의 개발 및 적용)

  • Ha, Minsu;Park, HyunJu;Kim, Yong-Jin;Kang, Nam-Hwa;Oh, Phil Seok;Kim, Mi-Jum;Min, Jae-Sik;Lee, Yoonhyeong;Han, Hyo-Jeong;Kim, Moogyeong;Ko, Sung-Woo;Son, Mi-Hyun
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.4
    • /
    • pp.495-504
    • /
    • 2018
  • This study was conducted to develop items to measure scientific core competency based on statements of scientific core competencies presented in the 2015 revised national science curriculum and to identify the validity and reliability of the newly developed items. Based on the explanations of scientific reasoning, scientific inquiry ability, scientific problem-solving ability, scientific communication ability, participation/lifelong learning in science presented in the 2015 revised national science curriculum, 25 items were developed by five science education experts. To explore the validity and reliability of the developed items, data were collected from 11,348 students in elementary, middle, and high schools nationwide. The content validity, substantive validity, the internal structure validity, and generalization validity proposed by Messick (1995) were examined by various statistical tests. The results of the MNSQ analysis showed that there were no nonconformity in the 25 items. The confirmatory factor analysis using the structural equation modeling revealed that the five-factor model was a suitable model. The differential item functioning analyses by gender and school level revealed that the nonconformity DIF value was found in only two out of 175 cases. The results of the multivariate analysis of variance by gender and school level showed significant differences of test scores between schools and genders, and the interaction effect was also significant. The assessment items of science core competency based on the 2015 revised national science curriculum are valid from a psychometric point of view and can be used in the science education field.

Accessibility Analysis in Mapping Cultural Ecosystem Service of Namyangju-si (접근성 개념을 적용한 문화서비스 평가 -남양주시를 대상으로-)

  • Jun, Baysok;Kang, Wanmo;Lee, Jaehyuck;Kim, Sunghoon;Kim, Byeori;Kim, Ilkwon;Lee, Jooeun;Kwon, Hyuksoo
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.4
    • /
    • pp.367-377
    • /
    • 2018
  • A cultural ecosystem service(CES), which is non-material benefit that human gains from ecosystem, has been recently further recognized as gross national income increases. Previous researches proposed to quantify the value of CES, which still remains as a challenging issue today due to its social and cultural subjectivity. This study proposes new way of assessing CES which is called Cultural Service Opportunity Spectrum(CSOS). CSOS is accessibility based CES assessment methodology for regional scale and it is designed to be applicable for any regions in Korea for supporting decision making process. CSOS employed public spatial data which are road network and population density map. In addition, the results of 'Rapid Assessment of Natural Assets' implemented by National Institute of Ecology, Korea were used as a complementary data. CSOS was applied to Namyangju-si and the methodology resulted in revealing specific areas with great accessibility to 'Natural Assets' in the region. Based on the results, the advantages and limitations of the methodology were discussed with regard to weighting three main factors and in contrast to Scenic Quality model and Recreation model of InVEST which have been commonly used for assessing CES today due to its convenience today.