• Title/Summary/Keyword: Proportional-integral controller

Search Result 408, Processing Time 0.024 seconds

Hardware-Based Implementation of a PIDR Controller for Single-Phase Power Factor Correction

  • Le, Dinh Vuong;Park, Sang-Min;Yu, In-Keun;Park, Minwon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.4
    • /
    • pp.21-30
    • /
    • 2016
  • In a single-phase power factor correction (PFC), the standard cascaded control algorithm using a proportional-integral-derivative (PID) controller has two main drawbacks: an inability to track sinusoidal current reference and low harmonic compensation capability. These drawbacks cause poor power factor and high harmonics in grid current. To improve these drawbacks, this paper uses a proportional-integral-derivative-resonant (PIDR) controller which combines a type-III PID with proportional-resonant (PR) controllers in the PFC. Based on a small signal model of the PFC, the type-III PID controller was implemented taking into account the bandwidth and phase margin of the PFC system. To adopt the PR controllers, the spectrum of inductor current of the PFC was analyzed in frequency domain. The hybrid PIDR controller were simulated using PSCAD/EMTDC and implemented on a 3 kW PFC prototype hardware. The performance results of the hybrid PIDR controller were compared with those of an individual type-III PID controller. Both controllers were implemented successfully in the single-phase PFC. The total harmonic distortion of the proposed controller were much better than those of the individual type-III PID controller.

Attitude Control of Helicopter Simulator System using A Hybrid GA-PID WAVENET Controller (Hybrid GA-PID WAVENET 제어기를 이용한 모형 헬리콥터 시스템의 자세 제어)

  • 박두환;지석준;이준탁
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.6
    • /
    • pp.433-439
    • /
    • 2004
  • The Helicopter Simulator System is non-linear and complex. Futhermore, because of absence of its accurate mathematical model, it is difficult to control accurately its attitudes such as elevation angle and azimuth one. Therefore, we proposed a Hybrid GA-PID WAVENET(Genetic Algorithm Proportional Integral Derivative Wavelet Neural Network)control technique to control efficiently these angles. The proposed Hybrid GA-PID WAVENET is made through the following process. First, the WAVENET fundamental functions are defined. And their dilation and translation values are adjusted by GA to construct the optimal WAVENET controller. Secondly, the proportional, integral, and derivative gain coefficients of PR controller are tuned optimally. Finally, WAVENET controller which has a good transient characteristic and GA-PE controller which has a good steady state characteristic is adequately combined in hybrid type. Through the computer simulations, it is proved that the Hybrid GA-PE WAVENET control technique has a more excellent dynamic response than PID control technique and GA-PID one.

Hybrid Position/Force Control of 3 DOF Robot (3자유도 로봇의 하이브리드 위치/힘 제어)

  • 양선호;박태욱;양현석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.772-776
    • /
    • 1997
  • For a robot to perfom more versatile tasks, it is invitable for the robot's end-effector to come into contact with its environment. In thos case, to achieve better performance, it is necessary to properly control the contact force between the robot and the environment. In thos work, hybrid control theory is studied and is verified through experiment using a 3 DOF robot. In the experiment, two position/force controllers are used. Fist, proportional-integral-derivative controller is used as the controller for both position and force. Second, computed-torque method is used as the position controller, and proportional-integral-derivative controller is used as the force controller. For a proper modeling used in computed-torque method, the friction torque is measured by experiment, and compensation method is studied. The hybrid control method used in this experiment effectively control the contact force between the end-effector and the environment for various types of jobs.

  • PDF

On the Application af Robust Multivariable Controller to Distillation Column (증류탑 제어에 있어서 로바스트 다변수 제어 응용에 관한 연구)

  • 고재욱;이원규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.238-243
    • /
    • 1986
  • Distillation columns are widely used in almost every chemical plant. The use of multivariable control for such units is attractive because of the strong interactions exhibited between outputs and inputs and the desire to control simultaneously both top and bottom products. In this research design of a robust multivariable controller for distillation column was considered; output feedback controller with proportional and integral modes was designed using pole assignment. The transfer function matrix was obtained by fitting the step response realtions between single input double output pairs of variables. This matrix was then converted to linear time invariant state space model by multivariable realization technique. With the proposed multivariable proportional and integral controller applied to the process, the result of the digital computer simulation showed a good performance of asymtotic tracking. The limited experimental performance of this multivariable control was compared with the result from simulation. It was found that the proposed controller performed satisfactorily for the distillation column which separated binary mixture of methanol and water.

  • PDF

Comparative study of proportional-integral, proportional-resonant, and predictive deadbeat controllers in a PV PCS (태양광 전력변환장치의 PI, PR 및 PD 제어기 비교 연구)

  • Le, Dinh-Vuong;Kim, Chang-Soon;Hwang, Chul-Sang;Park, Minwon;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1050-1051
    • /
    • 2015
  • In industry, there are several different controllers which can be implemented for power conditioning systems (PCS) such as proportional-resonant (PR), predictive deadbeat (PD), or proportional-integral (PI) controller. But there are not any comparison studies about these controllers. To investigate the differences between the three types of the controllers, this paper presents a comparative study of PR, PI, and PD controllers in a photovoltaic (PV) PCS. These controllers are designed mathematically and simulated for the comparative analysis. The PI controller is designed in the rotating reference (dq) frame. The PR and PD controllers are implemented in the natural (abc) reference frame. The PCS is composed of a DC-DC boost converter and a full bridge inverter. The filter of the PCS is an LCL filter including a passive damping resistor. The parameters of PCS are 3 kW, 25 kHz switching frequency and 220 V-60 Hz grid voltage. The comparison results between these controllers for the grid-connected PCS are clearly shown. The simulation results demonstrate the detailed characteristics of each controller for the PV PCS in order to choose the controller for individual target properly.

  • PDF

Control of a pressurized light-water nuclear reactor two-point kinetics model with the performance index-oriented PSO

  • Mousakazemi, Seyed Mohammad Hossein
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2556-2563
    • /
    • 2021
  • Metaheuristic algorithms can work well in solving or optimizing problems, especially those that require approximation or do not have a good analytical solution. Particle swarm optimization (PSO) is one of these algorithms. The response quality of these algorithms depends on the objective function and its regulated parameters. The nonlinear nature of the pressurized light-water nuclear reactor (PWR) dynamics is a significant target for PSO. The two-point kinetics model of this type of reactor is used because of fission products properties. The proportional-integral-derivative (PID) controller is intended to control the power level of the PWR at a short-time transient. The absolute error (IAE), integral of square error (ISE), integral of time-absolute error (ITAE), and integral of time-square error (ITSE) objective functions have been used as performance indexes to tune the PID gains with PSO. The optimization results with each of them are evaluated with the number of function evaluations (NFE). All performance indexes achieve good results with differences in the rate of over/under-shoot or convergence rate of the cost function, in the desired time domain.

Comparison of Current Controllers of Grid-connected PCS for Distributed Resources (분산전원용 계통연계형 PCS의 전류제어기 비교)

  • Park, Jong-Hyoung;Jo, Teak-Hyun;Kim, Heung-Geun;Chun, Tae-Won;Nho, Eui-Cheol;Cha, Hon-Nyung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.274-280
    • /
    • 2012
  • In this paper, three current controllers for a grid-connected PCS using an LCL filter are compared and analyzed. Current controllers discussed in this paper are linear controllers such as PI (proportional-integral), PR (proportional-resonant), and DB (deadbeat) controller. Both transient and steady state responses of each controller are compared through both simulation and experiment. Although the DB controller has the fastest transient response and the lowest THD in the steady state, the DB controller has two cycles delay of current response in the steady state and has the stability problem which can be occurred due to variation of the system parameters. On the one hand the responses of PR controller are not much different from that of DB controller but the other hand that are not only strong to noise of grid current but also have smaller THD than PI controller. Considering the response time and stability issue of three controllers, the PR controller has the best performance among three controllers and thus can be strongly recommended as a current controller for a grid-connected PCS.

Development of a Temperature Controller for Microwave-assisted Digestion System for Agricultural Samples (농식품 시료 전처리를 위한 마이크로웨이브 분해기용 온도 제어장치 개발)

  • Mo, Chang-Yeon;Kim, Gi-Young;Kim, Hak-Jin;Kim, Yong-Hun;Yang, Kil-Mo;Lee, Kang-Jin
    • Journal of Biosystems Engineering
    • /
    • v.34 no.5
    • /
    • pp.371-376
    • /
    • 2009
  • Microwave digestion is a preferred pretreatment method for agricultural samples because of its quick chemical reaction and minimum loss of analytes. In this research, a feedback temperature controller was developed to control the temperature inside a vessel for the microwave-assisted digestion system. An existing industrial microwave oven was fitted with the temperature controller for controlling inside temperature of the vessel. Four control methods, On/Off, proportional (P), proportional integral (PI), and proportional integral derivative (PID) were used and compared. Experimental results showed that PID control produced best temperature control performance. The PID controller could maintain the temperature of water sample and rice sample in the digestion system with error range of $-2.5{\sim}3.3^{\circ}C$ and $-1.9{\sim}0.5^{\circ}C$ at set temperature of $170^{\circ}C$, respectively.

Application of a PID Feedback Control Algorithm for Adaptive Queue Management to Support TCP Congestion Control

  • Ryu, Seungwan;Rump, Christopher M.
    • Journal of Communications and Networks
    • /
    • v.6 no.2
    • /
    • pp.133-146
    • /
    • 2004
  • Recently, many active queue management (AQM) algorithms have been proposed to address the performance degradation. of end-to-end congestion control under tail-drop (TD) queue management at Internet routers. However, these AQM algorithms show performance improvement only for limited network environments, and are insensitive to dynamically changing network situations. In this paper, we propose an adaptive queue management algorithm, called PID-controller, that uses proportional-integral-derivative (PID) feedback control to remedy these weak-Dalles of existing AQM proposals. The PID-controller is able to detect and control congestion adaptively and proactively to dynamically changing network environments using incipient as well as current congestion indications. A simulation study over a wide range of IP traffic conditions shows that PID-controller outperforms other AQM algorithms such as Random Early Detection (RED) [3] and Proportional-Integral (PI) controller [9] in terms of queue length dynamics, packet loss rates, and link utilization.

Fuzzy Controlled ZVS Asymmetrical PWM Full-bridge DC-DC Converter for Constant load High Power Applications

  • Marikkannan., A;Manikandan., B.V
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1235-1244
    • /
    • 2017
  • This paper proposes a fuzzy logic controlled new topology of high voltage gain zero voltage switching (ZVS) asymmetrical PWM full-bridge DC-DC boost converter for constant load and high power applications. The APWM full-bridge stage provides high voltage gain and soft-switching characteristics increase the efficiency and reduce the switching losses. Fuzzy logic controller (FLC) improves the performance and dynamic characteristics of the proposed converter. A comparison with a classical proportional-integral (PI) controller demonstrates the high performances of the proposed technique in terms of effective output voltage regulation under different operating conditions. Simulation is done by integrating two different simulation platforms $PSIM^{(R)}$ and $Matlab^{(R)}/Simulink^{(R)}$ by using SimCoupler tool of $PSIM^{(R)}$. Experimental results using 120W load have been provided to validate the results.