• Title/Summary/Keyword: Proportional-integral controller

Search Result 408, Processing Time 0.023 seconds

Steady-State Integral Proportional Integral Controller for PI Motor Speed Controllers

  • Hoo, Choon Lih;Haris, Sallehuddin Mohamed;Chung, Edwin Chin Yau;Mohamed, Nik Abdullah Nik
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.177-189
    • /
    • 2015
  • The output of the controller is said to exceed the input limits of the plant being controlled when a control system operates in a non-linear region. This process is called the windup phenomenon. The windup phenomenon is not preferable in the control system because it leads to performance degradation, such as overshoot and system instability. Many anti-windup strategies involve switching, where the integral component differently operates between the linear and the non-linear states. The range of state for the non-overshoot performance is better illustrated by the boundary integral error plane than the proportional-integral (PI) plane in windup inspection. This study proposes a PI controller with a separate closed-loop integral controller and reference value set with respect to the input command and external torque. The PI controller is compared with existing conventional proportional integral, conditional integration, tracking back calculation, and integral state prediction schemes by using ScicosLab simulations. The controller is also experimentally verified on a direct current motor under no-load and loading conditions. The proposed controller shows a promising potential with its ability to eliminate overshoot with short settling time using the decoupling mode in both conditions.

Extended Integral Control with the PI Controller (확장적분 제어개념을 도입한 PI 제어기에 관한 연구)

  • Ryu, Heon-Su;Jeong, Gi-Yeong;Song, Gyeong-Bin;Mun, Yeong-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.7
    • /
    • pp.345-349
    • /
    • 2000
  • This paper presents an extended integral control with the PI controller by introducing the delay and decaying factors. The extended integral control scheme is developed by substituting the proportional convolution integral control for the PI(Proportional Integral) control. So far, the integral part of PI controller produces a signal that is proportional to the time integral of the input signal to the controller. The steady-state operation points are affected forever by errors in the past due to the input signal containing the information of the error in the past. These phenomena may cause some disturbances for other control purposes related to the given PI control. Introduction of forgetting factors to the error in the past can resolve the disturbance problems. Various forgetting factors are developed using the delay elements, the decaying factors, and the combination of the delay and decaying factors. The proposed various extended integral control schemes can be applicable to the corresponding PI control designs in which the error in the past may badly affect the current steady-state operation points and may cause some disturbances for other control purposes.

  • PDF

DEVELOPMENT OF A SIMPLE CONTROL ALGORITHM FOR SWIRL MOTOR CONTROLLER

  • Lee, W.T.;Kang, J.J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.369-375
    • /
    • 2006
  • This paper describes a simple proportional and integral control algorithm for a swirl motor controller and its application. The control algorithm may be complicated in order to have desired performance, such as low steady state errors, fast response time, and relatively low overshoot. At the same time, it should be compact so that it can be easily implemented on a low cost microcontroller, which has no floating-point calculation capability and low computing speed. These conflicting requirements are fulfilled by the proposed control algorithm which consists of a gain scheduling proportional controller and an anti-windup integral controller. The mechanical friction, which is caused by gears and a return spring, varies very nonlinearly according to the angular position of the system. This nonlinear static friction is overcome by the proportional controller, which has a two-dimensional look up gain table. It has error axis and angular position axis. The integral controller is designed not only to minimize the steady state error but also to avoid the windup effect, which may be caused by the saturation of a motor driver. The proposed control algorithm is verified by use of a commercial product to prove the feasibility of the algorithm.

A Study on the MRPID parameter tuning method (MRPID 제어기의 튜닝 방법연구)

  • Lyu, Hyun-June
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.6
    • /
    • pp.21-28
    • /
    • 2007
  • Using multi-resolution, the mutiresolution proportional-integral-derivative(MRPID) controller functions as a filter to eliminate noise and disturbance which are included in error signals. If the sampling frequency is high, the response time will be delayed because of the remaining high frequency component although the overshoot is removed. However, if the sampling frequency is low, the response time will be enhanced by getting rid of signal components while the overshoot is increased. In this paper, the sampling frequency tuning method is used the response of the proportional integral derivative(PID) controller and the MRPID controller, and the parameter tuning method is considered the characteristic of the MRPID controller. The proposal method is verified by computer simulations.

Extended Integral Control with the PID Controller (PID 제어기를 이용한 확장 적분 제어)

  • Moon, Young-Hyun;Jung, Ki-Young;Ryu, Heon-Su;Song, Kyung-Bin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1063-1066
    • /
    • 1999
  • This paper presents an extended integral control with the PID controller by introducing the delay and decaying factors. The convolution integral control scheme is developed by substituting proportional convolution integral controls for the proportional-integral control. So far, the integral part of the PI controller produces a signal that is proportional to the time integral of the input of the controller. The steady-state operation points are affected forever by the errors in the past due to the input signal containing the information of the errors in the past. These phenomina may cause some disturbances for other control purposes related to the given PI control. Introduction of forgetting factors of the error in the past can resolve the disturbance problems. Various forgetting factors are developed using the delay, the decaying factors, and the combination of the delay and the decaying factors. The proposed various extended integral control schemes can be applicable to corresponding PI control designs in which the error in the past may badly affect to the current steady-state operation points and may cause some disturbances for other control purposes.

  • PDF

Control of the pressurized water nuclear reactors power using optimized proportional-integral-derivative controller with particle swarm optimization algorithm

  • Mousakazemi, Seyed Mohammad Hossein;Ayoobian, Navid;Ansarifar, Gholam Reza
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.877-885
    • /
    • 2018
  • Various controllers such as proportional-integral-derivative (PID) controllers have been designed and optimized for load-following issues in nuclear reactors. To achieve high performance, gain tuning is of great importance in PID controllers. In this work, gains of a PID controller are optimized for power-level control of a typical pressurized water reactor using particle swarm optimization (PSO) algorithm. The point kinetic is used as a reactor power model. In PSO, the objective (cost) function defined by decision variables including overshoot, settling time, and stabilization time (stability condition) must be minimized (optimized). Stability condition is guaranteed by Lyapunov synthesis. The simulation results demonstrated good stability and high performance of the closed-loop PSO-PID controller to response power demand.

Auto-tuning of PID/PIDA Controllers based on Step-response (스텝응답에 기반한 PID/PIDA 제어기의 자동동조)

  • Ahn, Kyung-Pil;Lee, Jun-Sung;Lim, Jae-Sik;Lee, Young-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.974-981
    • /
    • 2009
  • In this paper, a method of auto-tuning of PID (Proportional-Integral-Derivative) and PIDA (Proportional-Integral-Derivative-Acceleration) controllers is proposed that can be applied to a time-delayed second order model. The proposed identification method is based on step responses, but it can be easily automated rising digital controller unlike the existing graphical identification methods. We provide a ways to yield parameter identifications which is independent to initial values of the plants. The tuning rule is based on the pole-placement strategy and is formulated so that it can be implemented using a digital controller with ease.

Anti-windup Integral-Proportional Controller for Variable-Speed Motor Drives

  • Park, Jong-Gyu;Chung, Jae-ho;Shin, Hwi-Beom
    • Journal of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.130-138
    • /
    • 2002
  • The windup phenomenon appears and degrades control performance when a controller with integrating action is used and plant input is limited. An anti-windup integal-proportional(IP) controller is proposed for the variable-speed moter drives and it is experimentally applied to the speed control of a vector-controlled induction moter driven by a pulse width modulated (PWM) voltage source inverter (VSI). The consistency range of the IP controller is firstly derived and the intergal state is controlled to salisfy always the consistency range according to whether the the controller output is saturated or not. Although the operating condition like moter load or speed command is changed under the limited plant input, It is expermentally verified that the speed response has much improved performance, such as no overshoot and fast settling time, and the maximmum plant input is also effectively utilized.

Robustness of optimized FPID controller against uncertainty and disturbance by fractional nonlinear model for research nuclear reactor

  • Zare, Nafiseh;Jahanfarnia, Gholamreza;Khorshidi, Abdollah;Soltani, Jamshid
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2017-2024
    • /
    • 2020
  • In this study, a fractional order proportional integral derivative (FOPID) controller is designed to create the reference power trajectory and to conquer the uncertainties and external disturbances. A fractional nonlinear model was utilized to describe the nuclear reactor dynamic behaviour considering thermal-hydraulic effects. The controller parameters were tuned using optimization method in Matlab/Simulink. The FOPID controller was simulated using Matlab/Simulink and the controller performance was evaluated for Hard variation of the reference power and compared with that of integer order a proportional integral derivative (IOPID) controller by two models of fractional neutron point kinetic (FNPK) and classical neutron point kinetic (CNPK). Also, the FOPID controller robustness was appraised against the external disturbance and uncertainties. Simulation results showed that the FOPID controller has the faster response of the control attempt signal and the smaller tracking error with respect to the IOPID in tracking the reference power trajectory. In addition, the results demonstrated the ability of FOPID controller in disturbance rejection and exhibited the good robustness of controller against uncertainty.

Reduction of Periodic Speed Ripple of Electric Machines Using Resonant Controller and Repetitive Controller (공진제어기와 반복제어기를 사용한 전동기의 주기적인 속도 리플 저감)

  • Jung, Sung-Min;Lee, Jung-Ho;Choi, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1434-1446
    • /
    • 2018
  • This paper presents new speed control strategy for periodic load torque injected in AC motor. If motor drive system has a periodic load torque, it causes a periodic motor speed ripple bringing about vibrations and noises. This paper proposed new control method consisting of PIR(proportional-integral-resonant) controller and repetitive controller. PIR controller controls DC, low frequency and fundamental components and repetitive controller controls other harmonics. The performance has been verified through computer simulations using MATLAB Simulink and experiments.