• Title/Summary/Keyword: Proportional-Integral control

Search Result 499, Processing Time 0.031 seconds

Comparison of Proportional, Integral, and P-I Control Systems in Biological Wastewater Treatment Plants (생물학적 하수처리시스템에 적용된 Proportional, Integral 및 P-I 조절 시스템에 대한 비교)

  • Kim, Sungpyo
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.410-415
    • /
    • 2005
  • The main purpose of this study is to evaluate the characteristics of three sets of traditional control methods (proportional, integral, and proportional - integral controls) through lab-scale biological reactor experiments. An increase in proportional gain ($K_c$) resulted in reduced dissolved oxygen (DO) offset under proportional control. An increase in integral time ($T_i$) resulted in a slower response in DO concentration with less oscillation, but took longer to get to the set point. P-I control showed more stable and efficient control of DO and airflow rates compared to either proportional control or integral control. Developed P-I control system was successfully applied to lab-scale Sequencing Batch Reactor (SBR) for treating industrial wastewater with high organic strength.

Extended Integral Control with the PI Controller (확장적분 제어개념을 도입한 PI 제어기에 관한 연구)

  • Ryu, Heon-Su;Jeong, Gi-Yeong;Song, Gyeong-Bin;Mun, Yeong-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.7
    • /
    • pp.345-349
    • /
    • 2000
  • This paper presents an extended integral control with the PI controller by introducing the delay and decaying factors. The extended integral control scheme is developed by substituting the proportional convolution integral control for the PI(Proportional Integral) control. So far, the integral part of PI controller produces a signal that is proportional to the time integral of the input signal to the controller. The steady-state operation points are affected forever by errors in the past due to the input signal containing the information of the error in the past. These phenomena may cause some disturbances for other control purposes related to the given PI control. Introduction of forgetting factors to the error in the past can resolve the disturbance problems. Various forgetting factors are developed using the delay elements, the decaying factors, and the combination of the delay and decaying factors. The proposed various extended integral control schemes can be applicable to the corresponding PI control designs in which the error in the past may badly affect the current steady-state operation points and may cause some disturbances for other control purposes.

  • PDF

Effect of Active Control Bearing on Unbalance Response of a Rotor-Bearing System (축-베어링 계의 불균형 응답에 대한 능동 제어 베어링의 효과)

  • 노병후;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.316-321
    • /
    • 2001
  • The paper presents the unbalance response of a rotor-bearing system supported by an active control bearing. The proportional, derivative and integral controls are employed for the control algorithm of an active control bearing to suppress the unbalance response of a rotor-bearing system. Results of analytical investigations on the unbalance responses of a rotor supported by an active control bearing are presented for various control gains. It is found that the unbalance response of a rotor can be greatly suppressed by the proportional, derivative or integral control of the bearing. The proportional control is more effective than the derivative control at low rotational speed, and the derivative control is more effective than the proportional control at high rotational speed. In the case of the integral control of the bearing , the unbalance response of a rotor is increased as a general rule. However, the integral control of the bearing is extremely superior to proportional or derivative control at very low rotational speed.

  • PDF

Effect of Active Control Bearing on Unbalance Response of a Rotor-Bearing System (축-베어링 계의 불균형 응답에 대한 능동 제어 베어링의 효과)

  • 노병후;김경웅
    • Tribology and Lubricants
    • /
    • v.18 no.2
    • /
    • pp.99-104
    • /
    • 2002
  • The paper presents the unbalance response of a rotor-bearing system supported by an active control bearing. The proportional, derivative and integral controls are investigated fur the control algorithm of an active control bearing to suppress the unbalance response of a rotor-bearing system. Results of analytical investigations on the unbalance responses of a rotor supported by an active control bearing are presented for various control gains. It is found that the unbalance response of a rotor can be greatly suppressed by the proportional, derivative or integral control of the bearing. The proportional control is more effective than the derivative control at low rotational speed, and the derivative control is more effective than the proportional control at high rotational speed. In the case of the integral control of the bearing, the unbalance response ova rotor is increased as a general rule. However, the integral control of the bearing is extremely superior to proportional or derivative control at very low rotational speed.

Steady-State Integral Proportional Integral Controller for PI Motor Speed Controllers

  • Hoo, Choon Lih;Haris, Sallehuddin Mohamed;Chung, Edwin Chin Yau;Mohamed, Nik Abdullah Nik
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.177-189
    • /
    • 2015
  • The output of the controller is said to exceed the input limits of the plant being controlled when a control system operates in a non-linear region. This process is called the windup phenomenon. The windup phenomenon is not preferable in the control system because it leads to performance degradation, such as overshoot and system instability. Many anti-windup strategies involve switching, where the integral component differently operates between the linear and the non-linear states. The range of state for the non-overshoot performance is better illustrated by the boundary integral error plane than the proportional-integral (PI) plane in windup inspection. This study proposes a PI controller with a separate closed-loop integral controller and reference value set with respect to the input command and external torque. The PI controller is compared with existing conventional proportional integral, conditional integration, tracking back calculation, and integral state prediction schemes by using ScicosLab simulations. The controller is also experimentally verified on a direct current motor under no-load and loading conditions. The proposed controller shows a promising potential with its ability to eliminate overshoot with short settling time using the decoupling mode in both conditions.

Extended Integral Control with the PID Controller (PID 제어기를 이용한 확장 적분 제어)

  • Moon, Young-Hyun;Jung, Ki-Young;Ryu, Heon-Su;Song, Kyung-Bin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1063-1066
    • /
    • 1999
  • This paper presents an extended integral control with the PID controller by introducing the delay and decaying factors. The convolution integral control scheme is developed by substituting proportional convolution integral controls for the proportional-integral control. So far, the integral part of the PI controller produces a signal that is proportional to the time integral of the input of the controller. The steady-state operation points are affected forever by the errors in the past due to the input signal containing the information of the errors in the past. These phenomina may cause some disturbances for other control purposes related to the given PI control. Introduction of forgetting factors of the error in the past can resolve the disturbance problems. Various forgetting factors are developed using the delay, the decaying factors, and the combination of the delay and the decaying factors. The proposed various extended integral control schemes can be applicable to corresponding PI control designs in which the error in the past may badly affect to the current steady-state operation points and may cause some disturbances for other control purposes.

  • PDF

DEVELOPMENT OF A SIMPLE CONTROL ALGORITHM FOR SWIRL MOTOR CONTROLLER

  • Lee, W.T.;Kang, J.J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.369-375
    • /
    • 2006
  • This paper describes a simple proportional and integral control algorithm for a swirl motor controller and its application. The control algorithm may be complicated in order to have desired performance, such as low steady state errors, fast response time, and relatively low overshoot. At the same time, it should be compact so that it can be easily implemented on a low cost microcontroller, which has no floating-point calculation capability and low computing speed. These conflicting requirements are fulfilled by the proposed control algorithm which consists of a gain scheduling proportional controller and an anti-windup integral controller. The mechanical friction, which is caused by gears and a return spring, varies very nonlinearly according to the angular position of the system. This nonlinear static friction is overcome by the proportional controller, which has a two-dimensional look up gain table. It has error axis and angular position axis. The integral controller is designed not only to minimize the steady state error but also to avoid the windup effect, which may be caused by the saturation of a motor driver. The proposed control algorithm is verified by use of a commercial product to prove the feasibility of the algorithm.

Auto-tuning of PID/PIDA Controllers based on Step-response (스텝응답에 기반한 PID/PIDA 제어기의 자동동조)

  • Ahn, Kyung-Pil;Lee, Jun-Sung;Lim, Jae-Sik;Lee, Young-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.974-981
    • /
    • 2009
  • In this paper, a method of auto-tuning of PID (Proportional-Integral-Derivative) and PIDA (Proportional-Integral-Derivative-Acceleration) controllers is proposed that can be applied to a time-delayed second order model. The proposed identification method is based on step responses, but it can be easily automated rising digital controller unlike the existing graphical identification methods. We provide a ways to yield parameter identifications which is independent to initial values of the plants. The tuning rule is based on the pole-placement strategy and is formulated so that it can be implemented using a digital controller with ease.

A Study on Dynamic Characteristics of a Rotor-Bearing System Supported by Actively Controlled Hydrodynamic Journal Bearing (능동 제어 베어링으로 지지된 축-베어링 시스템의 동특성에 관한 연구)

  • 노병후;김경웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.635-638
    • /
    • 2001
  • This paper presents the dynamic characteristics of r rotor-bearing system supported by an actively controlled hydrodynamic journal bearing. The proportional, derivative and integral controls are adopted for the control algorithm to control the hydrodynamic journal bearing with an axially groove. Also, the cavitation algorithm implementing the Jakobsson-Floberg-olsson boundery condition is adopted to predict cavitation regions in the fluid film more accurately than conventional analysis, which uses the Reynolds condition. The speed at onset of instability of a rotor-bearing system is increased by both proportional and derivative control of the bearing. The integral control has no effect on stability characteristics of hydrodynamic journal bearing. The PD-control is more effective than proportional or derivative control. Results show the active control of bearing can be adopted for the stability improvement of a rotor-bearing system.

  • PDF

Incremental Passivity Based Control for DC-DC Boost Converters under Time-Varying Disturbances via a Generalized Proportional Integral Observer

  • He, Wei;Li, Shihua;Yang, Jun;Wang, Zuo
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.147-159
    • /
    • 2018
  • In this paper, the voltage tracking control of a conventional DC-DC boost converter affected by unknown, time-varying circuit parameter perturbations is investigated. Based on the fundamental property of incremental passivity, a passivity based control law is designed. Then, to obtain a better disturbance rejection property, two generalized proportional integral (GPI) observers are employed to estimate the time-varying uncertainties in the output voltage and inductor current channels, and the estimated values are applied as feedforward compensation. Moreover, the global trajectory tracking performance of a system with disturbances is ensured under the composite controller. Finally, simulation and experiment studies are provided to demonstrate the feasibility and effectiveness of the proposed method. The results show that the proposed controller delivers a promising disturbance rejection capability as well as a good nominal tracking performance.