• 제목/요약/키워드: Proportional-Integral Control

검색결과 498건 처리시간 0.024초

Robust pole assignment of proportional integral control system

  • Kim, Hwan-Seong;Ogasawara, Kenichi;Kawaji, Shigeyasu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.373-378
    • /
    • 1994
  • This paper is concerned with assess the possibility of robust pole assignment of proportional integral(PI) state feedback control system. First, the equivalence relations between a PI control system and an argumented control system proposed by Kawaji and Kim(1994) are extended from the new points of views of invariant closed loop poles. Second, on the relations, a remarkable result that the integral gain of PI control system is directly related to the insensitivity of system is presented. And, it is shown that the design of robust PI pole assignment is possible under the certain conditions.

  • PDF

Control of the pressurized water nuclear reactors power using optimized proportional-integral-derivative controller with particle swarm optimization algorithm

  • Mousakazemi, Seyed Mohammad Hossein;Ayoobian, Navid;Ansarifar, Gholam Reza
    • Nuclear Engineering and Technology
    • /
    • 제50권6호
    • /
    • pp.877-885
    • /
    • 2018
  • Various controllers such as proportional-integral-derivative (PID) controllers have been designed and optimized for load-following issues in nuclear reactors. To achieve high performance, gain tuning is of great importance in PID controllers. In this work, gains of a PID controller are optimized for power-level control of a typical pressurized water reactor using particle swarm optimization (PSO) algorithm. The point kinetic is used as a reactor power model. In PSO, the objective (cost) function defined by decision variables including overshoot, settling time, and stabilization time (stability condition) must be minimized (optimized). Stability condition is guaranteed by Lyapunov synthesis. The simulation results demonstrated good stability and high performance of the closed-loop PSO-PID controller to response power demand.

Control of a pressurized light-water nuclear reactor two-point kinetics model with the performance index-oriented PSO

  • Mousakazemi, Seyed Mohammad Hossein
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2556-2563
    • /
    • 2021
  • Metaheuristic algorithms can work well in solving or optimizing problems, especially those that require approximation or do not have a good analytical solution. Particle swarm optimization (PSO) is one of these algorithms. The response quality of these algorithms depends on the objective function and its regulated parameters. The nonlinear nature of the pressurized light-water nuclear reactor (PWR) dynamics is a significant target for PSO. The two-point kinetics model of this type of reactor is used because of fission products properties. The proportional-integral-derivative (PID) controller is intended to control the power level of the PWR at a short-time transient. The absolute error (IAE), integral of square error (ISE), integral of time-absolute error (ITAE), and integral of time-square error (ITSE) objective functions have been used as performance indexes to tune the PID gains with PSO. The optimization results with each of them are evaluated with the number of function evaluations (NFE). All performance indexes achieve good results with differences in the rate of over/under-shoot or convergence rate of the cost function, in the desired time domain.

능동 제어 유체 윤활 베어링으로 지지된 축-베어링 시스템의 동특성에 관한 연구 (A Study on Dynamic Characteristics of a Rotor-Bearing System Supported by Actively Controlled Fluid Film Journal Bearing)

  • 노병후;김경웅
    • 한국정밀공학회지
    • /
    • 제18권8호
    • /
    • pp.116-121
    • /
    • 2001
  • The paper presents the dynamic characteristics of a rotor-bearing system supported by an actively controlled hydrodynamic journal bearing. The proportional. derivative and integral controls are adopted for the control algorithm to control the hydrodynamic journal bearing with an axial groove. Also, the cavitation algorithm implementing the Jakobsson-Floberg-Olsson boundary condition is adopted to predict cavitation regions in the fluid film more accurately than conventional analysis, which uses the Reynolds condition. The speed at onset of instability of a rotor-bearing system is increased by both proportional and derivative control of the bearing. The proportional control increases the stability threshold without affecting the whirl ratio. However, for the derivative control of the bearing, increase of stability threshold speed is accompanied by a parallel reduction of the whirl ratio. The integral control has no effect on stability characteristics of hydrodynamic journal bearing. The PD-control is more effective than proportional or derivative control. Results 7how the active control of bearing can be adopted for the stability improvement of a rotor-bearing system.

  • PDF

자이로와 가속도 센서를 이용한 차륜형 도립진자 이동로봇 제어 (The Wheeled Inverted Pendulum Mobile Robot Control Using Gyroscope and Accelerometer Sensor)

  • 유환신;박형배
    • 한국항행학회논문지
    • /
    • 제16권4호
    • /
    • pp.703-708
    • /
    • 2012
  • 본 논문은 비선형성이 내재된 모바일 역진자형 로봇 시스템의 제어기 성능을 개선하고, 위치와 속도제어를 위하여 두 개의 다룬 휠로 구동되는 역진자형 타입의 모바일 로봇으로 모델링하였다. 이 시스템은 파라미터의 변화를 실시간으로 체크하고. 제어신호는 여러 상황에서 시스템이 원하는 상태를 유지하도록 변화하게 구성하였고, PI 제어기로 설계하였다. 시스템이 불안정하므로 시스템의 안전성 판별을 통하여 PI 제어기의 게인 값을 설계하였다. 위 실험 결과로서 수동 튜딩 방법 보다 터 좋은 적절한 방법의 성능을 얻을 수 있었다.

Anti-windup Integral-Proportional Controller for Variable-Speed Motor Drives

  • Park, Jong-Gyu;Chung, Jae-ho;Shin, Hwi-Beom
    • Journal of Power Electronics
    • /
    • 제2권2호
    • /
    • pp.130-138
    • /
    • 2002
  • The windup phenomenon appears and degrades control performance when a controller with integrating action is used and plant input is limited. An anti-windup integal-proportional(IP) controller is proposed for the variable-speed moter drives and it is experimentally applied to the speed control of a vector-controlled induction moter driven by a pulse width modulated (PWM) voltage source inverter (VSI). The consistency range of the IP controller is firstly derived and the intergal state is controlled to salisfy always the consistency range according to whether the the controller output is saturated or not. Although the operating condition like moter load or speed command is changed under the limited plant input, It is expermentally verified that the speed response has much improved performance, such as no overshoot and fast settling time, and the maximmum plant input is also effectively utilized.

Effect of feedback on PID controlled active structures under earthquake excitations

  • Nigdeli, Sinan Melih
    • Earthquakes and Structures
    • /
    • 제6권2호
    • /
    • pp.217-235
    • /
    • 2014
  • In this paper, different feedback control strategies are presented for active seismic control using proportional-integral-derivative (PID) type controllers. The parameters of PID controller are found by using an numerical algorithm considering time delay, maximum allowed control force and time domain analyses of shear buildings under different earthquake excitations. The numerical algorithm scans combinations of different controller parameters such as proportional gain ($K_p$), integral time ($T_i$) and derivative time ($T_d$) in order to minimize a defined response of the structure. The controllers for displacement, velocity and acceleration feedback control strategies are tuned for structures with active control at the first story and all stories. The performance and robustness of different feedback controls on time and frequency responses of structures are evaluated. All feedback controls are generally robust for the changing properties of the structure, but acceleration feedback control is the best one for efficiency and stability of control system.

A Modular Disturbance Observer-based Cascade Controller for Robust Speed Regulation of PMSM

  • Kim, In Hyuk;Son, Young Ik
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1663-1674
    • /
    • 2017
  • This paper deals with the robust speed regulation of a surface-mounted permanent magnet synchronous motor (SPMSM) that is subject to parametric uncertainties and external disturbances. The proposed approach retains a conventional cascade control configuration composed of an outer-loop speed control module and inner-loop current control modules. Baseline proportional-integral (PI) controllers are designed for nominal modular systems without accounting for the uncertainties to set a desired control performance of the closed-loop system. After studied in both frequency and time domains, a reduced-order proportional-integral observer (PIO), as a modular disturbance observer, is incorporated with each control module to maintain the ideal performance of the modules. Theoretical analysis confirms the desired performance recovery of the augmented system with modular PIOs to the nominal system. Comparative computer simulations and experimental results validate the proposed cascade control method for SPMSM speed regulation.

3자유도 로봇의 하이브리드 위치/힘 제어 (Hybrid Position/Force Control of 3 DOF Robot)

  • 양선호;박태욱;양현석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.772-776
    • /
    • 1997
  • For a robot to perfom more versatile tasks, it is invitable for the robot's end-effector to come into contact with its environment. In thos case, to achieve better performance, it is necessary to properly control the contact force between the robot and the environment. In thos work, hybrid control theory is studied and is verified through experiment using a 3 DOF robot. In the experiment, two position/force controllers are used. Fist, proportional-integral-derivative controller is used as the controller for both position and force. Second, computed-torque method is used as the position controller, and proportional-integral-derivative controller is used as the force controller. For a proper modeling used in computed-torque method, the friction torque is measured by experiment, and compensation method is studied. The hybrid control method used in this experiment effectively control the contact force between the end-effector and the environment for various types of jobs.

  • PDF

Application of a PID Feedback Control Algorithm for Adaptive Queue Management to Support TCP Congestion Control

  • Ryu, Seungwan;Rump, Christopher M.
    • Journal of Communications and Networks
    • /
    • 제6권2호
    • /
    • pp.133-146
    • /
    • 2004
  • Recently, many active queue management (AQM) algorithms have been proposed to address the performance degradation. of end-to-end congestion control under tail-drop (TD) queue management at Internet routers. However, these AQM algorithms show performance improvement only for limited network environments, and are insensitive to dynamically changing network situations. In this paper, we propose an adaptive queue management algorithm, called PID-controller, that uses proportional-integral-derivative (PID) feedback control to remedy these weak-Dalles of existing AQM proposals. The PID-controller is able to detect and control congestion adaptively and proactively to dynamically changing network environments using incipient as well as current congestion indications. A simulation study over a wide range of IP traffic conditions shows that PID-controller outperforms other AQM algorithms such as Random Early Detection (RED) [3] and Proportional-Integral (PI) controller [9] in terms of queue length dynamics, packet loss rates, and link utilization.