• Title/Summary/Keyword: Proportional-Integral Control

Search Result 498, Processing Time 0.027 seconds

Controller Design of BLDC Motor Fin Position Servo System by Employing H-infinity Loop Shaping Method (H-infinity Loop Shaping 방법을 이용한 BLDC 전동기 핀 위치제어시스템 제어기 설계)

  • Zhu, He-Lin;Mok, Hyung-Soo;Lee, Hyeong-Geun;Han, Soo-Hee;Seo, Hyeon-Uk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.49-55
    • /
    • 2019
  • This study proposes a robust control of a fin position servo system using the H-infinity loop-shaping method. The fin position control system has a proportional (P) position controller and a proportional-integral (PI) controller. In this work, the position control loop requires a wide bandwidth. No current control loop exists due to the compact design of the system. Hence, the controller parameters are difficult to determine using the traditional cascade design method. The $H_{\infty}$ controller design method is used to design the controller's gain to achieve good performance and robustness. First, the transfer function of the system, which can be divided into tunable and fixed parts, is derived. The tunable part includes the position P controller and speed PI controller. The fixed part includes the rest of the system. Second, the optimized controller parameters are calculated using Matlab $H_{\infty}$ controller design program. Finally, the system with optimized controller is tested by simulation and experiment. The control performance is satisfactory, and the $H_{\infty}$ controller design method is proven to be valid.

Experimental Studies of Swing Up and Balancing Control of an Inverted Pendulum System Using Intelligent Algorithms Aimed at Advanced Control Education

  • Ahn, Jaekook;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.200-208
    • /
    • 2014
  • This paper presents the control of an inverted pendulum system using intelligent algorithms, such as fuzzy logic and neural networks, for advanced control education. The swing up balancing control of the inverted pendulum system was performed using fuzzy logic. Because the switching time from swing to standing motion is important for successful balancing, the fuzzy control method was employed to regulate the energy associated with the angular velocity required for the pendulum to be in an upright position. When the inverted pendulum arrived within a range of angles found experimentally, the control was switched from fuzzy to proportional-integral-derivative control to balance the inverted pendulum. When the pendulum was balancing, a joystick was used to command the desired position for the pendulum to follow. Experimental results demonstrated the performance of the two intelligent control methods.

A Design and Control of an Active Magnetic Bearing System (능동형 자기 베어링 시스템의 설계 및 제어)

  • 김종문;최영규
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.82-89
    • /
    • 2004
  • In this paper, an active magnetic bearing(AMB) system is designed and controlled using a digital Proportional-Integral-Derivative(PID) control concept. The plant dynamics consisting of actuator and rigid rotor dynamics are described. A digital PID controller with a global control and a local control concept is designed and implemented using digital signal processor. Some experiments are conducted with each global control and local control concept. These include start-up test, impulse test, whirl response, and generator load test. The experimental results and comparison between those of a global control and a local control indicate that the global control of concept has impressive static and dynamic control performance for the prototype considered. From the whirl test, the developed system set can be controlled within about $\pm10\mu\textrm{m}$ gap variation at the rotational speed of 6000rpm and generate the AC power of frequency of $60\textrm{Hz}$, voltage of 100V and current of 0.8$\textit{A}$.

Permanent Magnet Synchronous Motor Control Algorithm Based on Stability Margin and Lyapunov Stability Analysis

  • Jie, Hongyu;Xu, Hongbing;Zheng, Yanbing;Xin, Xiaoshuai;Zheng, Gang
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1505-1514
    • /
    • 2019
  • The permanent magnet synchronous motor (PMSM) is widely used in various fields and the proportional-integral (PI) controller is popular in PMSM control systems. However, the motor parameters are usually unknown, which can lead to a complicated PI controller design and poor performance. In order to design a PI controller with good performance when the motor parameters are unknown, a control algorithm based on stability margin is proposed in this paper. First of all, based on the mathematical model of the PMSM and the least squares (LS) method, motor parameters are estimated offline. Then based on the estimation values of the motor parameters, natural angular frequency and phase margin, a PI controller is designed. Performance indices including the natural angular frequency and the phase margin are used directly to design the PI controller in this paper. Scalar functions of the d-loop and the q-loop are selected. It can be seen that the designed controller parameters satisfy Lyapunov large scale asymptotic stability theory if the natural angular frequencies of the d-loop and the q-loop are large than 0. Experimental results show that the parameter estimation method has good accuracy and the designed PI controller proposed in this paper has good static and dynamic performances.

Trajectory Tracking Controller for Semiconductor Equipment Motors based on PI Observer (PI 관측기 기반 반도체 장비 모터의 궤적 추종 제어기 설계)

  • Yun Seong Cho;Hyeon Jun Choi;Sang Min Jeon;Ji Hoon Shin;Jae Young Lee;Bum Joo Lee;Young Ik Son
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.96-103
    • /
    • 2023
  • This paper presents a robust position tracking controller for a motor used in semiconductor equipment, utilizing the motor angle measurement. Precise position control is challenging due to the presence of uncertainties in various motor applications. The proposed controller consists of a PD (Proportional-Derivative) controller and a PIO (Proportional-Integral Observer) to estimate the system's state and equivalent disturbance compensating for the uncertainties. Since the stability alternates as the observer gain increases, we have investigated it through the closedloop root locus under the system parameters change. The analysis has showed that the inertia of the motor is the main parameter that affects it, and by adjusting the control gain appropriately, the system can be rendered to be stable even when the inertia of the motor changes. The effectiveness of the proposed control algorithm is validated through computer simulations, followed by a comparison of its performance with the results of a previous study.

  • PDF

A study on Fuzzy control for Inverter Welding Machine (인버터 용접기의 퍼지제어에 관한 연구)

  • 정재윤;조성갑
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.4
    • /
    • pp.103-110
    • /
    • 1995
  • Fuzzy theory is recently finding wide popularity in various applications that include management, economics, medicine and process control system. This paper describes application of fuzzy logic in a current control system that use a inverter welding machine. The Fuzzy control is then extended to the current loop control, replacing the conventional proportional-integral(PI) control methods. The fuzzy control algorithms have been developed in detail and verified by experiments of a inverter welding system. The experimentation study indicates the superiority of fuzzy control over the I control methods. Fuzzy control seems to have a lot of promise in the applications of welding process control system.

  • PDF

Digital Control of an AC/DC Converter using the Power Balance Control Technique with Average Output Voltage Measurement

  • Wisutmetheekorn, Pisit;Chunkag, Viboon
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.88-97
    • /
    • 2012
  • This paper presents a method for the digital control of a high power factor AC/DC converter employing the power balance control technique to achieve a fast response of the output voltage control. To avoid the effects of an output voltage ripple in the voltage control loop, the average output voltage is sampled and used as a feedback signal for the output voltage controller. The proposed control technique was verified by simulations using MATLAB/Simulink and its implementation was realized by a dsPIC30F4011 digital signal processor to control a CUK topology AC/DC converter with a 48V output voltage and a 250 W output power. The experimental results agree with the simulation results. The proposed control technique achieves a fast transient response with a lower line current distortion than is achieved when using a conventional proportional-integral controller and the power balance control technique with the conventional sampling method.

Model-Free Torque Control of Rotary Electro-Hydraulic Actuator using Mechanical Impedance Reduction (기계임피던스 감소기법을 이용한 회전형 전기-유압식 구동기의 모델 없는 토크제어방법)

  • Lee, Woongyong;Chung, Wan Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.77-89
    • /
    • 2020
  • This paper proposes a simple and intuitive model-free torque-tracking control for rotary electro-hydraulic actuators. The undesirable natural-velocity-feedback effect is discussed by introducing mechanical impedance into the electro-hydraulic actuation system. The proposed model-free torque control comprises inner- and outer-loop control to achieve two control objectives. Inner-loop control reduces the mechanical impedance passively and optimally. To improve the tracking accuracy, a certain form of proportional-integral-derivative control is applied to the outer loop. The robustness of the proposed closed-loop system against external disturbances is demonstrated by transforming the two-loop control structure into a disturbance observer form. The proposed method is validated on a single joint electro-hydraulic actuator.

Pitch Angle Control and Wind Speed Prediction Method Using Inverse Input-Output Relation of a Wind Generation System

  • Hyun, Seung Ho;Wang, Jialong
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1040-1048
    • /
    • 2013
  • In this paper, a sensorless pitch angle control method for a wind generation system is suggested. One-step-ahead prediction control law is adopted to control the pitch angle of a wind turbine in order for electric output power to track target values. And it is shown that this control scheme using the inverse dynamics of the controlled system enables us to predict current wind speed without an anemometer, to a considerable precision. The inverse input-output of the controlled system is realized by use of an artificial neural network. The proposed control and wind speed prediction method is applied to a Double-Feed Induction Generation system connected to a simple power system through computer simulation to show its effectiveness. The simulation results demonstrate that the suggested method shows better control performances with less control efforts than a conventional Proportional-Integral controller.

A Study on the Engine/Brake integrated VDC System using Neural Network (신경망을 이용한 엔진/브레이크 통합 VDC 시스템에 관한 연구)

  • Ji, Kang-Hoon;Jeong, Kwang-Young;Kim, Sung-Gaun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.414-421
    • /
    • 2007
  • This paper presents a engine/brake integrated VDC(Vehicle Dynamic Control) system using neural network algorithm methods for wheel slip and yaw rate control. For stable performance of vehicle, not only is the lateral motion control(wheel slip control) important but the yaw motion control of the vehicle is crucial. The proposed NNPI(Neural Network Proportional-Integral) controller operates at throttle angle to improve the performance of wheel slip. Also, the suggested NNPID controller performs at brake system to improve steering performance. The proposed controller consists of multi-hidden layer neural network structure and PID control strategy for self-learning of gain scheduling. Computer Simulation have been performed to verify the proposed neural network based control scheme of 17 dof vehicle dynamic model which is implemented in MATLAB Simulink.