• Title/Summary/Keyword: Proportional valve

Search Result 215, Processing Time 0.027 seconds

Pressure Control of Electro-Hydraulic Servo System by Two-Degree of Freedom Control Scheme (2자유도 제어기법에 의한 전자 유압 서보계의 압력제어)

  • 양경욱;오인호;이일영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.110-120
    • /
    • 1996
  • The purpose of this study is to build up the control scheme that promptly controls the pressure in a hydraulic cylinder having small control volume, using a PCV(proportional control valve) and a digital computer. Object pressure control system has the character to be unstable easily, because the displacement-flow gain of the PCV is so large considering comparatively small volume of the hydraulic cylinder and the time delay of response of PCV is long. Considering the above-mentioned characteristics of the object pressure control system, in this study, a control system is designed with two degree of freedom scheme that is composed by adding a feed-forward control path to I-PD control system, and the reference model is used to decide control parameters. And through some experiments on FF-I-PD, the validity of this control method is confirmed.

  • PDF

A Study on PID Control Law's Realization for 2-Stage Proportional Pressure Control Valve with Analog Controller (아날로그 PID 제어기를 이용한 2단 비례 압력 제어 밸브의 실현에 관한 연구)

  • Yun, S.N.;Jeong, H.H.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.58-61
    • /
    • 2012
  • The customers who used the hydroulic system desire the product that has more detailed specification quickly during the industrial technology is developed. Every researcher try to reduce the developed period and to satisfy the customers' desire. Lot's of simulation software and hardware already was used to be satisfied those purpose. But these kind of equipment need a lot of cost to set up and technical knowledge to drive that system. This paper concerns about analog PID controller that can be assembled with a few resistor, condenser and optional amplifier and doesn't need technical knowledge to drive. At the first, the plant was modeled mathematically to design the analog PID controller's circuit. After that, PID controller's parameter was selected by customers' desire. Finally, the analog PID controller's circuit was assembled from the control law. The circuit's availability was confirmed by step response test in the controlled system.

A Study on Response Improvement of a Proportional Solenoid Actuator (비례제어 솔레노이드 액추에이터의 응답성 향상 연구)

  • Yun, So Nam;Ham, Young Bog;Park, Jung Ho
    • Journal of Drive and Control
    • /
    • v.13 no.3
    • /
    • pp.47-52
    • /
    • 2016
  • This paper presents a control method for the performance improvement of a proportional solenoid actuator using a Pulse Width Modulation (PWM) signal. It is very difficult to obtain excellent response performance from a proportional solenoid actuator using a simple proportional controller with no PWM signal or dither because the mass and structure of a proportional solenoid actuator changes according to the application target, friction force in the proportional solenoid tube, operating force and displacement range. To solve the above problems, first, a controller with a PWM function for experimenting with attraction force characteristics was designed and manufactured. Secondly, an experimental setup for solenoid performance measurement with a force sensor and a displacement sensor was also manufactured. The attraction force characteristics according to the frequency and duty ratio variations of a PWM signal were tested and the relationships among the frequency, duty ratio, plunger mass and friction characteristics were analyzed. Finally, response characteristics improvements for proportional solenoid actuators are discussed.

The Analysis and Control of Compressed Gas Discharging System (압축가스 방출 유압시스템 해석 및 제어)

  • 장웅락;김정관;한명철;정찬희;박인기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.458-462
    • /
    • 2004
  • The hydraulic system for discharging compressed gas is composed of compressor tank, proportional flow control servo valve, expulsion spool valve and discharging tube. Purpose of this study is to control of expulsion spool valve. First, we analyzed the hydraulic system. The flow control servo valve is modeled as a 2nd order transfer function and friction force of the expulsion spool valve is modeled as nonlinear model with stribeck effect. However, it is difficult to include the flow reaction force in modeling. So, we exchanged from the simplified flow reaction force of the compressed gas affection into the flow analysis code written in FORTRAN code. Our simulation of the oil pressure system for discharging gas used MATLAB/Simulink. So, we realized 'Level -2 S-Function Fortran' to cooperate for MATLAB/Simulink and FORTRAN code. PD controller is selected to control in this system. Simulation results show that with given conditions the controllers give a good tracking performance.

  • PDF

Classical Controller Design of Direct Drive Servo Valve Using Analytical Bode Method (해석적 Bode 방법에 의한 직접구동형서보밸브의 고전적 제어기 설계)

  • Lee, S.R.;Choi, H.Y.;Moon, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.507-514
    • /
    • 2001
  • Direct drive servovalve(DDV) is a kind of one-stage valve since the rotary motion of DC motor is directly transferred to the linear motion of valve spool through the link. Since the structure of DDV is simple, it is less expensive, more reliable and offers reduced internal leakage and reduced sensitivity to fluid contamination. However, the flow force effect on the spool motion is significant such that it induces large steady-state error in a step response. If the proportional control gain is increased to reduce the steady-state error, the system becomes unstable. In order to satisfy the system design requirements, the classical controller is designed using the analytical Bode method.

  • PDF

A Study on Characteristics of Flow Control Servo Valve with no Drain Orifice (드레인 오리피스가 없는 유랑제어 서보밸브의 특성에 관한 연구)

  • Yun, So-Nam;Gang, Bo-Sik;Seong, Baek-Ju;Kim, Hyeong-Ui
    • 연구논문집
    • /
    • s.26
    • /
    • pp.85-94
    • /
    • 1996
  • The purpose of this study is to bring out the optimal design factors which effect on dynamic characteristics in the design of proportional flow control valve with high response characteristics, and to verify the validity of the design factors. In this study, force feedback type flow control valve with nozzle-flapper is studied. And, the influences which fixed orifice, nozzle diameter, and maximum displacement between nozzle and flapper effect on dynamic characteristics are analyzed. We have done simulations using the optimal design factors and simulink(Matlab) as a simulation tool, and verified the validity of our simulations by means of comparison our simulation results with an experimental results of another similar valve.

  • PDF

Lead-Lag Controller Design of Direct Drive Servo Valve Using Complex Method (컴플렉스법에 의한 직접구동형서보밸브의 진상-지상 제어기 설계)

  • Lee, Seong-Rae
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1590-1595
    • /
    • 2003
  • Direct drive servovalve(DDV) is a kind of one-stage valve since the rotary motion of DC motor is directly transferred to the linear motion of valve spool through the link. Since the structure of DDV is simple, it is less expensive, more reliable and offers reduced internal leakage and reduced sensitivity to fluid contamination. However, the flow force effect on the spool motion is significant such that it induces large steady-state error in a step response. If the proportional control gain is increased to reduce the steady-state error, the system becomes unstable. In order to satisfy the system design requirements, the lead-lag controller is designed using the complex method that is one kind of constrained direct search method.

  • PDF

Control Valve Positioner and Its effect on a Gas Turbine MW Control (공정제어루프 최종 조작부의 동작특성에 관한 연구)

  • Kim, Jong-An;Shin, Yoon-Oh
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.728-730
    • /
    • 1998
  • The control valve positioner is a high gain plain proportional controller which measures the valve stem position and compares it to its setpoint which is the primary controller output. The positioner in effect is the cascade slave of the primary controller. In order for a cascade slave to be effecttive, it must be fast enough compared to the speed of its set point change. This paper describes the positioner transfer function and its effect on the entire control loop characteristic based on the simulation results. The result showed that the control valve and positioner determined the gain and phase angle in the high frequency range, while the primary controller and process determined those of the low frequency range. We can also anticipate the combined characteristics in the whole frequency range when each element's frequency response is known.

  • PDF