• Title/Summary/Keyword: Proportional hazards

Search Result 300, Processing Time 0.023 seconds

Pattern-Mixture Model of the Cox Proportional Hazards Model with Missing Binary Covariates (결측이 있는 이산형 공변량에 대한 Cox비례위험모형의 패턴-혼합 모델)

  • Youk, Tae-Mi;Song, Ju-Won
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.2
    • /
    • pp.279-291
    • /
    • 2012
  • When fitting a Cox proportional hazards model with missing covariates, it is inefficient to exclude observations with missing values in the analysis. Furthermore, if the missing-data mechanism is not Missing Completely At Random(MCAR), it may lead to biased parameter estimation. Many approaches have been suggested to handle the Cox proportional hazards model when covariates are sometimes missing, but they are based on the selection model. This paper suggest an approach to handle Cox proportional hazards model with missing covariates by using the pattern-mixture model (Little, 1993). The pattern-mixture model is expressed by the joint distribution of survival time and the missing-data mechanism. In the pattern-mixture model, many models can be considered by setting up various restrictions, and different results under various restrictions indicate the sensitivity of the model due to missing covariates. A simulation study was conducted to show the sensitivity of parameter estimation under different restrictions in a pattern-mixture model. The proposed approach was also applied to mouse leukemia data.

A study on the goodness-of-fit tests for proportional hazards model (비례위험모형의 적합도 검정법에 관한 연구)

  • 장애방;이재원
    • The Korean Journal of Applied Statistics
    • /
    • v.10 no.1
    • /
    • pp.85-104
    • /
    • 1997
  • Proportional hazards model has been widely used for analyzing survival data. This article reviews some well-known goodness-of-fit tests for proportional hazards model. Simulation studies also provide some insights into the properties of these test statistics across several types of survival distributions and degerees of censorship.

  • PDF

BAYESIAN MODEL AVERAGING FOR HETEROGENEOUS FRAILTY

  • Chang, Il-Sung;Lim, Jo-Han
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.1
    • /
    • pp.129-148
    • /
    • 2007
  • Frailty estimates from the proportional hazards frailty model often lead us to conjecture the heterogeneity in frailty such that the variance of the frailty varies over different covariate groups (e.g. male group versus female group). For such systematic heterogeneity in frailty, we consider a regression model for the variance components in the proportional hazards frailty model, denoted by the MLFM. However, in many cases, the observed data do not show any statistically significant preference between the homogeneous frailty model and the heterogeneous frailty model. In this paper, we propose a Bayesian model averaging procedure with the reversible jump Markov chain Monte Carlo which selects the appropriate model automatically. The resulting regression coefficient estimate ignores the model uncertainty from the frailty distribution in view of Bayesian model averaging (Hoeting et al., 1999). Finally, the proposed model and the estimation procedure are illustrated through the analysis of the kidney infection data in McGilchrist and Aisbett (1991) and a simulation study is implemented.

Availability of a Maintained System

  • Jung, Hai-Sung
    • International Journal of Reliability and Applications
    • /
    • v.3 no.4
    • /
    • pp.185-198
    • /
    • 2002
  • In the traditional life testing model, it is assumed that a certain number of identical items are tested under identical condition. This is due to statistical rather than practical considerations. The proportional hazards model can be used to develop a realistic approach to determine the performance of an item. That is also capable of modeling the failure rates of accelerated life testing when the covariates are applied stresses. The proportional hazards model is typically applied for a group of items to assess the importance of factors that may influence the reliability of an item. In this paper we considered the interarrival times of an item rather than the time to first failure for grouped items and provided the availability estimation for the determination of maintenance policy and overhaul time. In order to demonstrate the proposed approach, an example is presented.

  • PDF

Estimating causal effect of multi-valued treatment from observational survival data

  • Kim, Bongseong;Kim, Ji-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.6
    • /
    • pp.675-688
    • /
    • 2020
  • In survival analysis of observational data, the inverse probability weighting method and the Cox proportional hazards model are widely used when estimating the causal effects of multiple-valued treatment. In this paper, the two kinds of weights have been examined in the inverse probability weighting method. We explain the reason why the stabilized weight is more appropriate when an inverse probability weighting method using the generalized propensity score is applied. We also emphasize that a marginal hazard ratio and the conditional hazard ratio should be distinguished when defining the hazard ratio as a treatment effect under the Cox proportional hazards model. A simulation study based on real data is conducted to provide concrete numerical evidence.

Convergence of Score process in the Cox Proportional Hazards Model

  • Hwang, Jin-Soo
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.1
    • /
    • pp.117-130
    • /
    • 1997
  • We study the asymptotic behavior of the maximum partial likelihood estimator in the Cox proportional hazards model in the presence of nuisance parameters when the entry of patients is staggered. When entry of patients is simultaneous and there is only one regression parameter in the Cox model, the efficient score process of the partial likelihood is martingale and converges weakly to a time-chnaged Brownian motion. Our problem is to get a similar result in the presence of nuisance parameters when entry of patient is staggered.

  • PDF

Estimation on Modified Proportional Hazards Model

  • Lee, Kwang-Ho;Lee, Mi-Sook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.5 no.1
    • /
    • pp.59-66
    • /
    • 1994
  • Heller and Simonoff(1990) compared several methods of estimating the regression coefficient in a modified proportional hazards model, when the response variable is subject to censoring. We give another method of estimating the parameters in the model which also allows the dependent variable to be censored and the error distribution to be unspecified. The proposed method differs from that of Miller(1976) and that of Buckely and James(1979). We also obtain the variance estimator of the coefficient estimator and compare that with the Buckely-James Variance estimator studied by Hillis(1993).

  • PDF

Analysis of stage III proximal colon cancer using the Cox proportional hazards model (Cox 비례위험모형을 이용한 우측 대장암 3기 자료 분석)

  • Lee, Taeseob;Lee, Minjung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.349-359
    • /
    • 2017
  • In this paper, we conducted survival analyses by fitting the Cox proportional hazards model to stage III proximal colon cancer data obtained from the Surveillance, Epidemiology, and End Results program of the National Cancer Institute. We investigated the effect of covariates on the hazard function for death from proximal colon cancer in stage III with surgery performed and estimated the survival probability for a patient with specific covariates. We showed that the proportional hazards assumption is satisfied for covariates that were used to analyses, using a test based on the Schoenfeld residuals and plots of the Schoenfeld residuals and $log[-log\{{\hat{S}}(t)\}]$. We evaluated the model calibration and discriminatory accuracy by calibration plot and time-dependent area under the ROC curve, which were calculated using 10-fold cross validation.

Development and Evaluation of Electronic Health Record Data-Driven Predictive Models for Pressure Ulcers (전자건강기록 데이터 기반 욕창 발생 예측모델의 개발 및 평가)

  • Park, Seul Ki;Park, Hyeoun-Ae;Hwang, Hee
    • Journal of Korean Academy of Nursing
    • /
    • v.49 no.5
    • /
    • pp.575-585
    • /
    • 2019
  • Purpose: The purpose of this study was to develop predictive models for pressure ulcer incidence using electronic health record (EHR) data and to compare their predictive validity performance indicators with that of the Braden Scale used in the study hospital. Methods: A retrospective case-control study was conducted in a tertiary teaching hospital in Korea. Data of 202 pressure ulcer patients and 14,705 non-pressure ulcer patients admitted between January 2015 and May 2016 were extracted from the EHRs. Three predictive models for pressure ulcer incidence were developed using logistic regression, Cox proportional hazards regression, and decision tree modeling. The predictive validity performance indicators of the three models were compared with those of the Braden Scale. Results: The logistic regression model was most efficient with a high area under the receiver operating characteristics curve (AUC) estimate of 0.97, followed by the decision tree model (AUC 0.95), Cox proportional hazards regression model (AUC 0.95), and the Braden Scale (AUC 0.82). Decreased mobility was the most significant factor in the logistic regression and Cox proportional hazards models, and the endotracheal tube was the most important factor in the decision tree model. Conclusion: Predictive validity performance indicators of the Braden Scale were lower than those of the logistic regression, Cox proportional hazards regression, and decision tree models. The models developed in this study can be used to develop a clinical decision support system that automatically assesses risk for pressure ulcers to aid nurses.

The Comprehensive Proportional Hazards Model Incorporating Time-dependent Covariates for Water Pipes (상수관로에 대한 시간종속형 공변수를 포함한 포괄적 비례위험모형)

  • Park, Su-Wan
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.6
    • /
    • pp.445-455
    • /
    • 2009
  • In this paper proportional hazards models for the first through seventh break of 150 mm cast iron pipes in a case study area are established. During the modeling process the assumption of the proportional hazards for covariates on the hazards is examined to include the time-dependent covariate terms in the models. As a result, the pipe material/joint type and the number of customers are modeled as time-dependent for the first failure, and for the second failure only the number of customers is modeled as time-dependent. From the analysis on the baseline hazard functions the failure hazards are found to be generally increasing for the first and second failure, while the hazards of the third break and beyond showed a form of a bath-tub. Furthermore, the changes in the baseline hazard rates according to the time and number of break reflect that the general condition of the pipes is deteriorating. The factors causing pipe break and their effects are analyzed based on the estimated regression coefficients and their hazard ratios, and the constructed models are verified using the deviance residuals of the models.