International Journal of Reliability and Applications
Vol. 3, No. 4, pp. 185-198, 2002

Availability of a Maintained System

Hai Sung Jung
Department of Applied Statitics, Seowon University,
Cheongju, 361-742, Korea

Abstract. In the traditional life testing model, it is assumed that a
certain number of identical items are tested under identical condition.
This is due to statistical rather than practical considerations. The pro-
portional hazards model can be used to develop a realistic approach to
determine the performance of an item. That is also capable of modeling
the failure rates of accelerated life testing when the covariates are applied
stresses. The proportional hazards model is typically applied for a group
of items to assess the importance of factors that may influence the relia-
bility of an item. In this paper we considered the interarrival times of an
item rather than the time to first failure for grouped items and provided
the availability estimation for the determination of maintenance policy
and overhaul time. In order to demonstrate the proposed approach, an
example is presented.
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1. INTRODUCTION

This paper concerns the application of proportional hazards modeling to the
problem of item performance. In the traditional life testing model, it is assumed
that a certain number of identical items are tested under identical condition. This
is due to statistical rather than practical considerations as under these assumptions
the times to failure of these items are independent and identically distributed and
thus are more easily analyzed. Furthemore, in simple hazard modeling, the failure
of an item is purely time dependent. In many applications of reliability, however,
real interest is in determining the way in which life time depends on other variables,
some of which may be under the operator’s control.
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The proportional hazards model (PHM) can be used to develop a realistic ap-
proach to determine the performance of an item. The performance of an item is
influenced not only by the operating time, but by other factors. These influencing
factors include operating condition (e.q., vibration levels, temperature, pressure,
levels of metal paticles in engine oil, humidity, dust) and operating history (e.q.,
number of previous overhauls, time since last failure and maintenance). They are
generally referred to as covariates or explanatory variables. Given all the possible
covariates, PHM can be used to identify the explanatory factors and to predict the
performance of a item with those factors.

The PHM is one of the most important statistical regression models. The paper
by Cox (1972) aroused much interest in this model. While this model has had a
significant impact on the biostatistical field, it has recieved little attention in the
reliability literature. At first PHM has been used for the analysis of hardware relia-
bility (Argent et al. (1986), Marshall et al. (1990)), software reliability (Bendell and
Wightman (1986)) and repairable systems (Ascher (1983)). Recently the PHM has
been used for a preventive maintenance (PM) scheduling model. Kumar and West-
berg (1995) used the PHM to schedule maintenance under age replacement policy.
Percy and Kobbacy (1996) considered the analysis of PM policies with exponential
times to failure from a Bayesian viewpoint. In the above study, they did not consider
the ageing over the lifetime of an item or possible positive reliability growth due to
change in design. Kobbacy et al. (1997) used the PHM for a simulation framework
to schedule the PM interval. In this paper, we will present a way to estimate the
availability function with reliability data from an single item using PHM. Using this,
optimal PM schedules can be obtained when the availability of an item reaches a
predetermined level.

2. ANALYSIS OF THE PROPORTIONAL HAZARDS MODEL

In PHM the failure rate (hazard) function satisfies
At;z) = A(£;0)e% 8, (2.1)

where A(¢;z) is the failure rate (hazard) function at time ¢ for observations with
covariate vector, z7 = (21,22, -+, 2p), AT = (B1,02,- -+, Bp) is & vector of unknown
regression coefficients and A(¢; 0) is an unspecified baseline failure rate (hazard) func-
tion (i.e. the failure rate function when all covariates are zero). The PHM assumes
that the covariates act multiplicatively on the failure rate function, so that for dif-
ferent values of the covariates the failure rate functions at each time are proportionl
to each other.

The statistical analysis of PHM depends on whether or not we assume a par-
ticular functional form for the baseline failure rate function A(t;0). When baseline
function is not fitted to a specific model one has a semi-parametric PHM, and when
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it is assigned to a specific model, e.g. Weibull, this leads to a fully parametric model.
‘We suppose that the function A(¢;0) is completely unspecified.

Analysis of the Semi-Parametric PHM

Define, for convenience, ) = 0,f(x4+1) = oo and assume, as usual, that () <
2) < -+ < {(k) are the observed lifetimes in the random sample of n items and n—k
censoring times. Let R; be the set of items with ¢ > #;), where ¢ may be the either
an observed life time or a censored time. Here R; is the risk set at time Z(;) ; that is
those items which were at risk of failing just prior to i(;). To estimate 3, we use the
partial likelihood function L(3) without specifying the failure time distribution:

ko exp(z(yf)
L =
) 1:Hl Yicr; exp(2] B)

where z(;) is the vector of covariates associated with the unit observed to fail at
time #(;). Partial likelihood has been discussed Kalbfleisch and Prentice (1973) Cox
(1975), Efron (1977), Kalbfleisch and Prentice (1980), and others.

(2.2)

Time-dependent Covariates

In reliability applications it is very often appropriate to relate the current risk
of failure to a covariate which is time-dependent, such as an estimate of the current
wear or damage sustained by the component. To deal with this it is necessary to
replace z by z(t) in PHM (2.1). To estimate covariates the method described above
may be adapted when one or more of the covariates is time-dependent.

Estimation of the Baseline Reliability Function

Once the covariates have been estimated by maximization of (2.2), the estimation
of the baseline reliability function is often asked. It is clearly of interest to estimate
R(0;2), since this would give estimate of R(¢;z) for any z. The reliability function
for an individual with covariate vector z is

R(t; 2) = R(t;0)e” P,

where R(t;0) is the baseline reliability function of individual with z = 0.

Our approach to estimate R(0;z) is to estimate 8 from the partial likelihood
function (2.2) and then to maximize the full likelihood L(S, R(0;2z)) for R(0;z),
assuming that § is equal to the partialy maximum likelihood estimator B obtained
from (2.2). This approach was introduced by Kalbfleisch and Prentice (1973). The
following formular is used to estimate R(0;z).

R(O;Z)= H &,

’i:t(i)<t
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where @&; can be obtained by a solution from the following equations.

We assume that there are n; risk and d; death at t:)- And let D; be the set of
indivisuals dying at ¢(;). Defferentiating log likelihood with repect to oy, - -, o, we
can get equations:

exp(z] B) .
IEZD ‘;—E){:}(Tﬁ—* IEZI; exp 1= 1,"',k. (23)

When d; = |D;| = 1, (2.3) has a solution given by

exp(aT ) exp(z{; )
ElGRi eXp(zl :3)

When d; > 1, (2.3) must be solved iteratively for &;.

3. DATA ANALYSIS USING THE PROPORTIONAL HAZARDS
MODEL

In order to demonstrate the way to analyse the reliability data using the PHM,
an example is presented. This example is based on data for a pump in a plant.
The data are shown in Table 1. PM types are different but they consist of minor
routine work, e.g. adjustment and inspection work. The time of each PM includes
the repair work identified in inspection, if relevant. For simplicity of of analysis we
assume that all PMs are of the same type. Corrective maintenance (CM) is any
maintenance that occurs when the pump is failed.

Selection of Covariates

Before fitting the PHM, it is necessary to identify the potential covariates. The
following covariates which were selected are estimated at a point in time just before
the event CM or PM:

(a) age (age)

(b) average PM interval (avpm)

(c) total number of failures (nocm)

(d) total number of PMs (nopm)

(e) total down time of all PMs (dtpm)
(f) total man hours of all PMs (mhpm)
(g) time since last CM (tlecm)

(h) time since last PM (tlpm)

All the above variables are obviously time dependent. However, it is decided to
correlate the hazard function with the values of these covariates at a point in time
just before the event, i.e. PM or CM, thus avoiding the need to apply the more
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complex fitting of the PHM with time-dependent covariates. For example we are
interested in the age of equipment just before the event. This is a common way for
handing such variables, e.q. correlating survival as a function of patient age at the
start of treatment.

PHM for Interarrival Times

The PHM is typically applied for a group of items to assess the important of
factors with influence the item. For example Jardine et al. (1987) used PHM to
measure the importance of factors, such as flight hours since last overhaul and the
levels of various metal particles in engine oil, on engine condition monitoring and
overhaul time. In their analysis they used data for 27 engines.

To apply the PHM here we looked at the interarrival times of each of several items
of equipment rather than the time to first failure for grouped items of equipment. Let
us consider an item of equipment which has been subjected to time-based PM since
the equipment started operation to the present time. When the equipment fails, a
CM is taken to restore it to operating condition. Note that the major underlying
assumption in this study is that the lives following PM are independent and the
lives following CM are independent, conditional on covariates in both case. In this
study, the lives following PM and CM are seperately considered using PHM. The
failure rate function following PM is

Apm(t;2) = Ao (t; O)EZTﬂ,
similarly the failure rate function following CO is
A (t;%) = Aem(t;0)eX" 9,

where z and x are the vectors representing the covariates used in PM and CM
proportional hazards model.

All the considered covariates can be calculated at each point of PM and CM
from the data shown in Table 1. Table 2 and Table 3, 4 show the prepared data
files for PM and CM, respectively. The second column of the tables show the times
to failure and the third columns have the variable ‘cens’ which has a value of 1 for
an uncensored life terminated by the failure and 0 for censored life terminated by a
PM.

Fitting PHM for Life Times Following PM and CM

The statistical package SPSS was then used to fit the two PHMs for PM and
CM. The selection of the best model to fit the data was a learning process. The
backward stepwise(Wald) method was used with limit of 20 iterations and entry and
exit significance limits of 0.1 and 0.2, respectively. It was essential to rule out models
with highly correlated covariates as the resulting coefficients may be misleading.
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For the PM model, any two selected covariates of nocm, age, nopm, dtpm and
mhpm, have a correlation coeffcient higher than 0.952. The candidate covariates for
our PM model was chosen as tlpm, tlcm, avpm and one of the nocm, age, nopm,
dtpm, mhpm. The selected model for lives following PM is

)\pm(t§ avpm, age) — )\pm(t§ O)e~0.45~avpm+0.002»age.

The significant probobility of the significant test for the above model is 0.003.
The more significant of the covariates is the age.

For the CM model, adopting the above procedure to identify a suitable model
with PHM result in the following model.

/\cm (t; avpm, nocm) — )‘cm (t; 0)60.40-avpm—0.049-nocm.

The significant probobility of the significant test for the above model is 0.095.
The significants of two covariates are similar. For more significant CM model, we
considered a model for lives following CM without covariates. We assume that lives
following CM have a Weibull distribution. The reliability function based on Weibull
distribution is

t
R(t) = exp{—(ﬁ)m}, m > 0,7 > 0.
From the above equation,

1
Inln }T('Ej =mlnt — lnto,
where ty = 7™. If our assumption of Weibull is correct, when logarithm of the lives
following CM and its Inln{1/R(¢t)} are plotted, the relationship appears to be a
straight line. In our analysis these appear in Figure 1.

From the Figure 1, we have

_ _(_t o990

In this caes, since shape parameter m is close to 1, life limes following CM are
believed to have a exponential distribution. Finally using the procedure discussed
in Section 2 baseline reliability function for PM is estimated in Figure 2.

Fitting PHM for Repair Times Following PM and CM

Characteristics of repair times following PM and CM is studied in the similar
way as fitting PHM for life times following PM and CM.
For the PM case, The repair rate function for repair times following PM is

Npm(t; tlpm, age) — V‘pm(t; 0)6—0.008-tlpm—0.01-age.
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Figure 1. Regression Plot for Life Times Following CM without Covariates.
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Figure 2. Baseline Reliability Function for Lives Following PM.
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Figure 3. Regression Plot for Repair Times Following CM without Covariates.

The significant probobility of the significant test for the above model is 0.024.
For the CM case, a model for repair times following CM without covariates is more
significant. We assume that repair times following CM have a Lognormal distribu-
tion. The maintainability function based on lognormal distribution is given by

M) = o(mE A

= ), —oo<pu<oo,0>0.

The analysis result appears in Figure 3. From the Figure 3, we have

Int+0.5774

M(t) = (=595

So far we demonstrated the use of the PHM in estimating reliability and main-
tainability as well as failure rate and repair rate. This approach can be applied to
repairable systems and does not require a group of systems to access the performance
of the system.

Availability of Repairable Items

If the life times of the item being renewed are independently and identically
distributed (iid), if the nonneggligible repair times are also independently and iden-
tically distributed (iid) and if the life times and the repair times are independent,
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then availability function can be obtianed in the convolution form. Even with the
above assumption, availability function can be neither obtianed in the closed form
nor calculated easily. In this case, the availability converges rapidly to the steady
state availability. In the alternating renewal process, the limiting availability of an
item is given by

MTBF

A= YTBF 7 MTTR'

In the maintained system, availability function depends on the applied main-
teance policy. And the availability function is more complicated than iid case. So
I’d like to recommend the following method. If we assume that repair rate is con-
stant, that is constant repair rate 4 = 1 / MTTR, the following approximation can
be considered (Holcomb (1981)).

_ H
AW = 557

Using this, optimal PM schedules and overhaul time can be obtained when the
availability of an item reaches a predetermined level.
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Table 1. Raw history data for a pump

195

D Type Jobtime Man hour D Type Jobtime Man hour
- CM 5 5 64 CM 2 4
34 PM 1 1 8 PM 12 13
14 CM 10 20 62 PM 1 1
81 PM 3 3 8 CM 46 184
86 PM 3 3 46 CM 8 8
156 PM 2 2 22 CM 6 14
20 PM 1 1 51 CM 12 12
96 PM 3 3 51 CM 4 6
47 PM 1 1 15 CM 20 48
45 PM 3 3 18 CM 1 1
97 CM 5 8 1 CM 30 30
88 PM 5 5 26 PM 1 1
30 CM 24 48 37 CM 12 12
4 CcM 54 108 36 CM 48 108
1 CM 6 6 2 CM 5 10
4 CM 6 12 12 PM 6 8
13 CM 2 2 27 CM 7 7
27 CM 24 60 102 CM 48 73
8 CcM 6 10 3 CM 20 32
148 PM 6 6 13 CM 5 6
92 CM 3 6 8 CM 6 4
13 CM 12 60 6 CM 26 104
13 CM 6 6 26 CM 36 20
67 PM 6 6 15 PM 7 8
29 CM 5 18 10 CM 1 1
12 CM 24 48 25 CM 10 5
1 CM 12 24 44 PM 1 1
37 CM 21 42 30 CM 1 1
28 CM 14 28 31 CM 18 36
38 CM 4 4 12 CM 12 12
20 CM 3 6 69 PM 4 7
28 PM 12 13 12 CM 6 12
4 CM 12 24 65 PM 3 4
3 CM 3 3 43 PM 6 7
56 CM 4 4 4 CM 24 72

No. of days since last action
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Table 2. Life time following PM for fitting PHM

surv cens nocm tlpm age nopm dtpm mhpm tlem avpm

1 14 1 1 0 34 0 0 0 34 0
2 86 0 2 95 129 1 1 1 81 95
3 156 0 2 86 215 2 4 4 167 91
4 20 0 2 156 371 3 7 7 323 112
5 96 0 2 20 391 4 9 9 343 89
6 47 0 2 96 487 5 10 10 439 91
7 45 0 2 47 534 6 13 13 486 83
8 97 1 2 45 574 7 14 14 531 78
9 30 1 3 185 764 8 17 17 88 78
10 92 1 10 235 999 9 22 22 148 91
11 29 1 13 185 1184 10 28 28 67 107
12 44 1 20 193 1377 11 34 34 28 115
13 62 0 24 175 1552 12 46 47 8 122
14 8 1 24 62 1614 13 58 60 70 127
15 37 1 32 238 1852 14 59 61 26 122
16 27 1 35 87 1939 15 60 62 12 130
17 10 1 42 200 2139 16 66 70 15 127
18 44 1 44 79 2218 17 73 78 44 132
19 12 1 47 145 2363 18 74 79 69 128
20 43 0 48 77 2440 19 78 86 65 129
21 4 1 48 43 2483 20 81 90 108 127




Table 3. Life times following CM for fitting PHM
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surv cens mnocm tlpm age nopm dtpm mhpm tlem avpm
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Table 4. Life times following CM for fitting PHM (continued)

surv cens nocm tlpm age nopm dtpm mhpm tlem avpm

34 7 1 33 1925 73 15 60 62 36 130
35 12 0 34 1927 75 15 60 62 2 130
36 102 1 35 1966 27 16 66 70 39 127
37 3 1 36 2068 129 16 66 70 102 127
38 13 1 37 2071 132 16 66 70 3 127
39 8 1 38 2084 145 16 66 70 13 127
40 6 1 39 2092 153 16 66 70 8 127
41 26 i 40 2098 159 16 66 70 6 127
42 15 0 41 2124 185 16 66 70 26 127
43 25 1 42 2149 10 17 73 78 25 132
44 44 0 43 2174 35 17 73 78 25 132
45 31 1 44 2248 30 18 74 79 74 128
46 15 1 45 2279 61 18 74 79 31 128
47 69 0 46 2294 76 18 74 79 15 128
48 65 0 47 237 12 19 78 86 81 129




