Journal of the Korean Data and Information Science Society
/
v.22
no.3
/
pp.613-618
/
2011
The proposed method is based on a penalized log partial likelihood of Cox proportional hazard model with L1-penalty. We use the iteratively reweighted least squares procedure to solve L1 penalized log partial likelihood function of Cox proportional hazard model. It provide the ecient computation including variable selection and leads to the generalized cross validation function for the model selection. Experimental results are then presented to indicate the performance of the proposed procedure.
Journal of the Korean Data and Information Science Society
/
v.15
no.4
/
pp.965-971
/
2004
In this paper we consider several nonparametric estimators for the mean residual life by using the partial moment approximation under the proportional hazard model. Also we compare the magnitude of mean square error of the proposed nonparametric estimators for mean residual life under the proportional hazard model.
Communications for Statistical Applications and Methods
/
v.24
no.6
/
pp.583-604
/
2017
The most popular regression model for the analysis of time-to-event data is the Cox proportional hazards model. While the model specifies a parametric relationship between the hazard function and the predictor variables, there is no specification regarding the form of the baseline hazard function. A critical assumption of the Cox model, however, is the proportional hazards assumption: when the predictor variables do not vary over time, the hazard ratio comparing any two observations is constant with respect to time. Therefore, to perform credible estimation and inference, one must first assess whether the proportional hazards assumption is reasonable. As with other regression techniques, it is also essential to examine whether appropriate functional forms of the predictor variables have been used, and whether there are any outlying or influential observations. This article reviews diagnostic methods for assessing goodness-of-fit for the Cox proportional hazards model. We illustrate these methods with a case-study using available R functions, and provide complete R code for a simulated example as a supplement.
International Journal of Reliability and Applications
/
v.2
no.1
/
pp.1-26
/
2001
The purpose of this paper is to introduce a proportional reversed hazard rate model, in contrast to the celebrated proportional hazard model, and study some of its structural properties. Some criteria of ageing are presented and the inheritance of the ageing notions (of the base line distribution) by the proposed model are studied. Two important data sets are analyzed: one uncensored and the other having some censored observations. In both cases, the confidence bands for the failure rate and survival function are investigated. In one case the failure rate is bathtub shaped and in the other it is upside bath tub shaped and thus the failure rates are non-monotonic even though the baseline failure rate is monotonic. In addition, the estimates of the turning points of the failure rates are provided.
Journal of the Korean Data and Information Science Society
/
v.15
no.3
/
pp.605-616
/
2004
In this paper we consider the proportional hazard models for survival analysis in the microarray data. For a given vector of response values and gene expressions (covariates), we address the issue of how to reduce the dimension by selecting the significant genes. In our approach, rather than fixing the number of selected genes, we will assign a prior distribution to this number. To implement our methodology, we use a Markov Chain Monte Carlo (MCMC) method.
Communications for Statistical Applications and Methods
/
v.27
no.6
/
pp.675-688
/
2020
In survival analysis of observational data, the inverse probability weighting method and the Cox proportional hazards model are widely used when estimating the causal effects of multiple-valued treatment. In this paper, the two kinds of weights have been examined in the inverse probability weighting method. We explain the reason why the stabilized weight is more appropriate when an inverse probability weighting method using the generalized propensity score is applied. We also emphasize that a marginal hazard ratio and the conditional hazard ratio should be distinguished when defining the hazard ratio as a treatment effect under the Cox proportional hazards model. A simulation study based on real data is conducted to provide concrete numerical evidence.
Communications for Statistical Applications and Methods
/
v.17
no.1
/
pp.99-106
/
2010
In this paper, we present two methods for obtaining prediction intervals for the times to failure of units censored in multiple stages in a progressively censored sample from proportional hazard rate models. A numerical example and a Monte Carlo simulation study are presented to illustrate the prediction methods.
We study the normality of the maximum partial likelihood estimators for the proportional hazard model with informative censored data. The proposed models cover the cases in which the times to a primary event may be informatively or randomly censored and the times to a secondary event may be randomly censored. To estimate the parameters and to check the normality of the parameters in the model, we adopt the partial likelihood and counting process to use the martingale central limit theorem. Simulation studies are performed to examine the normality of the MPLE's for the five cases in which they depend upon the proportions of randomly censored and informative censored data.
In this paper a methodology of identifying individual pipes according to the internal and external characteristics of pipe is developed, and the methodology is applied to a case study water distribution pipe break database. Using the newly defined individual pipes the hazard rates of the cast iron 6 inch pipes are modeled by implementing the proportional hazards modeling approach for consecutive pipe failures. The covariates to be considered in the modeling procedures are selected by considering the general availability of the data and the practical applicability of the modeling results. The individual cast iron 6 inch pipes are categorized into seven ordered survival time groups according to the total number of breaks recorded in a pipe to construct distinct proportional hazard model (PHM) for each survival time group (STG). The modeling results show that all of the PHMs have the hazard rate forms of the Weibull distribution. In addition, the estimated baseline survivor functions show that the survival probabilities of the STGs generally decrease as the number of break increases. It is found that STG I has an increasing hazard rate whereas the other STGs have decreasing hazard rates. Regarding the first failure the hazard ratio of spun-rigid and spun-flex cast iron pipes to pit cast iron pipes is estimated as 1.8 and 6.3, respectively. For the second or more failures the relative effects of pipe material/joint type on failure were not conclusive. The degree of land development affected pipe failure for STGs I, II, and V, and the average hazard ratio was estimated as 1.8. The effects of length on failure decreased as more breaks occur and the population in a GRID affected the hazard rate of the first pipe failure.
Proceedings of the Korean Operations and Management Science Society Conference
/
2004.10a
/
pp.615-618
/
2004
The previous quantitative bankruptcy prediction models cannot include time dimension. To overcome this limit, various dynamic models using survival analysis are developed recently. This paper emphasizes that the proportionality assumption must be adapted with caution when the Cox's proportional hazard model is used to explain bankruptcy. It is shown that a non-proportional hazard model including a change point model is a proper alternative, when the proportionality assumption is violated by the change of macroeconomic environment, such as the financial crisis in 1997.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.