• Title/Summary/Keyword: Propionate Degradation

Search Result 45, Processing Time 0.03 seconds

Effects of Defaunation on Fermentation Characteristics, Degradation of Ryegrass Hay and Methane Production by Rumen Microbes In Vitro When Incubated with Plant Oils

  • Qin, Wei-Ze;Li, Cheng-Yun;Choi, Seong-Ho;Jugder, Shinekhuu;Kim, Hyun-Ju;Lee, Sang-Suk;Song, Man-Kang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.3
    • /
    • pp.193-201
    • /
    • 2014
  • This study was conducted to examine the effects of defaunation (removal of live protozoa) on fermentation characteristics, degradation of ryegrass hay and $CH_4$ (methane) production by rumen microbes when incubated with plant oils (SO, sunflower oil and LO, linseed oil) in vitro. Sodium lauryl sulfate (0.000375 g/ml) as a defaunation reagent was added into the culture solution and incubated anaerobically up to 24 h at $39^{\circ}C$. pH from defaunation was increased for all treatments from 6 h incubation times (p<0.01-0.001) compared with those from fauantion. Concentration of ammonia-N from defaunation is higher than that from faunation at 3 h (p<0.001), 12 h (p<0.05) and 24 h (p<0.001) incubation times. Defaunation decreased (p<0.01-0.001) total volatile fatty acid concentration at all incubation times. Molar proportions of $C_2$ (acetate, p<0.05-0.001) and butyrate (p<0.01-0.001) were also decreased by defaunation at all incubation times. Molar proportion of $C_3$ (propionate), however, was increased by defaunation at all incubation times (p<0.001). Thus the rate of $C_2$ to $C_3$ was decreased by defaunation at all incubation times (p<0.001). Defaunation decreased ED (effective degradability) of dry matter (p<0.001) and ED of neutral detergent fiber (p<0.001) of ryegrass hay. Defaunation decreased total gas, $CH_4$ production, $CH_4$ % in total gas and $CH_4/CO_2$ at all incubation times (p<0.001). Oil supplementation decreased total gas (p<0.05-0.001), $CH_4$ production (p<0.001) and $CH_4$ % in total gas (p<0.001) compared with control at all incubation times. The result of this study showed that defaunation combined with oil supplementation may cause an alteration of microbial communities and further medicate the fermentation pattern, resulting in both reduction of degradation of ryegrass hay and $CH_4$ production. No difference, however, was observed in all the examinations between SO and LO.

Protein Fractionation of Whole Crop Silages, and Effect of Borate-phosphate Buffer Extraction on In vitro Fermentation Characteristics, Gas Production and Degradation (사료작물 사일리지의 단백질 분획 및 Borate-phosphate Buffer 추출이 In vitro 발효성상, Gas 발생 그리고 분해율에 미치는 효과)

  • Shinekhuu, Judder;Jin, Guang-Lin;Ji, Byung-Ju;Li, Xiangzi;Oh, Young-Kyoon;Hong, Seong-Ku;Song, Man-Kang
    • Journal of Animal Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.369-378
    • /
    • 2009
  • Protein fractionation was evaluated from whole crop silages of rye (RS), wheat (WS), triticale (TS), oat (OS), barley (BS), and rice straw silage (RSS), and in vitro trial was carried out to examine the effect of silage and extraction of soluble protein on fermentation characteristics, total gas production and degradation. Soluble protein of silages was extracted with borate-phosphate buffer, and fermentation characteristics, gas production and degradation of silages were estimated by incubating anaerobically the mixed solution of strained rumen fluid and artificial saliva (1:1, v/v) containing dried and ground silages placed in nylon bag at $39^{\circ}C$ up to 48h. Soluble protein (SP) content was lowest for RSS as 2.11% in total CP compared to those for other silages. Highest A fraction (NPN) was observed from RS (74.33% of total CP) while those from TS and RSS were relatively low (48%). B2 fraction was relatively higher for RS, RSS and WS than for TS and BS. $B_3$ fraction was lowest in WS among silages. C fraction (27.07) in RSS was higher than in other silages (1.40~9.93%). pH in incubation solution was increased (P<0.01~P<0.001) for extracted silages up to 12h but decreased (P<0.01) at 48h for non-extracted ones. Contents of ammonia-N (P<0.001) and total VFA (P<0.01~P<0.001) were higher for non-extracted silages than for extracted ones. Acetate proportion was increased (P<0.001) in buffer extracted silages while those of propionate and butyrate were decreased (P<0.001) up to 24h incubation. Increased (P<0.001) total gas production was obtained from non-extracted silages up to 12h while gas production was increased (P<0.01) in extracted ones thereafter. In vitro degradation of dry matter and CP was increased (P<0.001) in non-extracted silages but that of neutral detergent fiber was increased (P<0.001) in extracted ones without difference among silages. Difference in mean values of degradability for each silage prior to- and post extraction with borate buffer, however, was not found among silages. It may be concluded that high NPN content of silages may reduce the protein availability in silages and borate buffer soluble components in silages can stimulate the early stage of fermentation.

Effects of Dietary Replacement of Rice Straw with Fermented Spent Mushroom (Flammuliua velutipes) Compost on Availability of Feeds in Sheep, and Growth Performance of Hanwoo Steers (발효 팽이버섯폐배지의 볏짚 대체 급여가 사료의 면양 체내 이용성 및 거세한우의 성장에 미치는 효과)

  • Shinekhuu, Jugdder;Ji, Byung-Ju;Jin, Guang-Lin;Choi, Seong-Ho;Song, Man-Kang
    • Journal of Animal Science and Technology
    • /
    • v.51 no.3
    • /
    • pp.241-248
    • /
    • 2009
  • Metabolic trial with 3 fistulated sheep was conducted in a 3 $\times$ 3 Latin square design and feeding trial with 24 Hanwoo steers in 12 month of age for 20 months was conducted to investigate the replacing effect of rice straw with fermented spent mushroom (Flammuliua velutipes) compost (FSMC) on fermentation characteristics, ruminal effective degradabilty and whole tract digestibility of nutrients in sheep, and to examine the growth performance of Hanwoo steers. Experimental diets for the metabolic trial with sheep were commercial concentrates and rice straw in the ratio of 70 : 30 (CON, DM basis). Same concentrate with 30% FSMC and 70% rice straw (FSMC-30) and 60% FSMC and 40% rice straw(FSMC-60). Diets for Hanwoo steers in three treatments were same as for metabolic trial in replacing ratio of rice straw with FSMC. pH of rumen fluid in sheep was not affected by FSMC. Ammonia-N content in the rumen fluid was highest in the sheep fed FSMC-60 at 3h (P<0.045). The CON diet increased (P<0.001) acetate proportion at 1h and 3h post feeding compared to FSMC-60 diet while propionate proportion was highest in the sheep fed FSMC-60 diet for all the sampling times (P<0.027~P<0.002). Increased proportion of butyrate was observed at 30 min prior to feeding (P<0.031), and 1h (P<0.011) and 6h(P<0.039) post feeding from sheep fed FSMC-30 diet compared to those from sheep fed other diets. Effective degradability in the rumen was not influenced by experimental diets. Whole tract digestibility of crude protein (P<0.031) and neutral detergent fiber (P<0.006) tended to be increased in the sheep fed CON diet while corresponding values were lowest in the sheep fed FSMC-60 diet. Total body weight gain of Hanwoo steers for 8 months was not different among diets, thus daily body gain was not influenced by the experimental diets.

Ruminal microbial responses in fermentation characteristics and dry matter degradability to TDN level of total mixed ration

  • Lee, Seung-Uk;Jo, Jin-Ho;Park, Sung-Kwon;Choi, Chang-Weon;Jeong, Jun;Chung, Ki-Young;Chang, Sun-Sik;Li, Xiang Zi;Choi, Seong-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.1
    • /
    • pp.80-86
    • /
    • 2016
  • An in vitro trial was conducted to examine the effects of total mixed rations (TMR) on fermentation characteristics and effective degradability (ED) by rumen microbes. Three TMR diets were growing period TMR (GR-TMR, 67% TDN), early fattening period TMR (EF-TMR, 75.4% TDN) and late fattening TMR (LF-TMR, 80% TDN). Three TMR diets (3 g of TMRs in each incubation bottles) was added to the mixed culture solution of stained rumen fluid with artificial saliva (1:1, v/v) and incubated anaerobically for 48 hours at $39^{\circ}C$. The pH in all incubation solutions tended to decrease up to 48h, but the opposite results were found in concentration of total gas production, ammonia-N and total VFA in all incubations.The total gas production (p<0.05) in LF-TMR was highest compared with those of other diets. Also, concentration of total VFA was tended to increase in LF-TMR compared with other TMR diets in all incubations. The EDDM in both EF-TMR and LF-TMR was tended to high compared with GR-TMR (p=0.100). In this in vitro trials, concentration of propionate in all incubation solution was not affected by increased concentration of TDN. The results of the present in vitro study indicate that TMR may provide more favorable condition for nutrient digestion both in the rumen.

Intermediary Metabolism of Plasma Acetic Acid, Glucose and Protein in Sheep Fed a Rice Straw-based Diet

  • Alam, M.K.;Ogata, Y.;Sako, Y.;Al-Mamun, M.;Sano, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.10
    • /
    • pp.1333-1339
    • /
    • 2010
  • The present study was conducted to determine plasma acetate, glucose and protein metabolism using dilution of isotopes [[1-$^{13}C$]Na acetate, [U-$^{13}C$]glucose and [1-$^{13}C$]leucine (Leu)] in sheep fed rice straw (Oriza japonica L.). Four sheep were assigned to either rice straw (RS-diet) or mixed hay (MH-diet) with a crossover design. Nitrogen (N) intake and N digestibility were lower (p = 0.002 and p = 0.02, respectively) for RS-diet than MH-diet, but N retention did not differ (p>0.10) between the diets. Concentrations of rumen acetate tended to be lower (p = 0.07), and propionate was higher (p = 0.02) for RS-diet than MH-diet. Concentrations of plasma lactate, non-esterified fatty acids, Leu and ${\alpha}$-ketoisocaproic acid did not differ (p>0.10) between the diets, but plasma glucose and urea concentrations were lower (p = 0.01 and p = 0.003, respectively) for RS-diet than MH-diet. Turnover rate of plasma acetate did not differ (p = 0.39) between the diets, and plasma glucose and Leu turnover rates were numerically lower (p = 0.15 and p = 0.14, respectively) for RS-diet than MH-diet. Whole body protein synthesis and degradation did not differ (p>0.10) between the diets. Thus it can be concluded that the intermediary metabolism of acetate, glucose and protein on rice straw is comparable to mixed hay in sheep.

Effect of Defaunation on In Vitro Fermentation Characteristics and Methane Emission When Incubated with Forages

  • Qin, Wei-Ze;Choi, Seong-Ho;Lee, Seung-Uk;Lee, Sang-Suk;Song, Man-Kang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.3
    • /
    • pp.197-205
    • /
    • 2013
  • An in vitro study was conducted to determine the effects of defaunation (removal of protozoa) and forage sources (rice straw, ryegrass and tall fescue) on ruminal fermentation characteristics, methane ($CH_4$) production and degradation by rumen microbes. Sodium lauryl sulfate, as a defaunation reagent, was added into the mixed culture solution to remove ruminal protozoa at a concentration of 0.375 mg/ml. Pure cellulose (0.64 g, Sigma, C8002) and three forage sources were incubated in the bottle of culture solution of mixed rumen microbes (faunation) or defaunation for up to 24 h. The concentration of ammonia-N was high under condition of defaunation compared to that from faunation in all incubations (p<0.001). Total VFA concentration was increased at 3, 6 and 12 h (p<0.05~p<0.01) but was decreased at 24 h incubation (p<0.001) under condition of defaunation. Defaunation decreased acetate (p<0.001) and butyrate (p<0.001) proportions at 6, 12 and 24 h incubation times, but increased propionate (p<0.001) proportion at all incubation times for forages. Effective degradability of dry matter was decreased by defaunation (p<0.001). Defaunation not only decreased total gas (p<0.001) and $CO_2$ (p<0.01~0.001) production at 12 and 24 h incubations, but reduced $CH_4$ production (p<0.001) at all incubation times for all forages. The $CH_4$ production, regardless of defaunation, in order of forage sources were rice straw > tall fescue > ryegrass > cellulose (p<0.001) up to 24 h incubation.

Effect of Supplemental Corn Dried Distillers Grains with Solubles Fed to Beef Steers Grazing Native Rangeland during the Forage Dormant Season

  • Murillo, M.;Herrera, E.;Ruiz, O.;Reyes, O.;Carrete, F.O.;Gutierrez, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.5
    • /
    • pp.666-673
    • /
    • 2016
  • Two experiments were conducted to evaluate the effects of the level of corn dry distillers grains with solubles (CDDGS) supplementation on growing performance, blood metabolites, digestion characteristics and ruminal fermentation patterns in steers grazing dormant forage. In Exp. 1, of growth performance, 120 steers ($204{\pm}5kg$ initial body weight [BW]) were distributed randomly into 3 groups (each of 40 steers), which were provided with the following levels of CDDGS supplement: 0%, 0.25%, or 0.50% BW. All groups of steers were grazed for 30 days in each of 3 grazing periods (March, April, and May). Approximately 1,000 ha of the land was divided with electric fencing into 3 equally sized pastures (333 ha in size). Blood samples were collected monthly from 20 steers in each grazing group for analysis of glucose (G), urea-nitrogen (UN) and non-esterified fatty acids. Final BW, average daily gain (ADG) and supplement conversion (CDDGS-C) increased with increasing levels of CDDGS supplementation (p<0.05).The CDDGS supplementation also increased the plasma G and UN concentrations (p<0.05). In Exp. 2, of digestive metabolism, 9 ruminally cannulated steers ($BW=350{\pm}3kg$) were distributed, following a completely randomized design, into groups of three in each pasture. The ruminally cannulated steers were provided the same levels of CDDGS supplementation as in the growing performance study (0%, 0.25%, and 0.50% BW), and they grazed along with the other 40 steers throughout the grazing periods. The dry matter intake, crude protein intake, neutral detergent fiber intake (NDFI), apparent digestibility of dry matter (ADDM), crude protein (ADCP) and neutral detergent fiber (ADNDF) increased with increasing levels of CDDGS supplementation (p<0.05). The ruminal degradation rates of CP (kdCP), NDF (kdNDF) and passage rate (kp) also increased with increasing levels of CDDGS supplementation (p<0.05). Ruminal ammonia nitrogen ($NH_3$-N) and propionate concentrations also increased with increasing levels of CDDGS supplementation (p<0.05). However, acetate concentrations decreased with increasing levels of CDDGS supplementation (p<0.05). Liquid dilution rate increased with increasing levels of CDDGS supplementation but ruminal liquid volume decreased (p<0.05). On the basis of these findings, we can conclude that CDDGS supplementation enhanced the productive performance of cattle grazing native rangeland without negatively affecting forage intake, glucose and urea-nitrogen blood concentrations, ruminal degradation and ruminal fermentation patterns.

Hydrogen Gas Production by Fermentation from Various Sugars Using Clostridium butyricum NCIB 9576 (Clostridium butyricum NCIB 9576에 의한 당으로부터 혐기적 수소생산)

  • Kim, Mi-Sun;Moon, Kwang-Woong;Lee, In-Gu;Lee, Tae-Jin;Sung, Chang-Keun
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.1
    • /
    • pp.62-69
    • /
    • 1999
  • Clostridium butyricum NCIB 9576 evolved hydrogen gas and produced various organic acids from glucose, lactose, starch, and glycerol. Total amount of hydrogen gas produced from 1 and 2% glucose were 630 and 950ml $H_2$/l-broth, respectively, for the first 24 hrs of incubation and the maximum hydrogen production rates were 42 and 94ml $H_2$/hr/1-broth, respectively. Teh initial pH 6.8 decreased to 4.2~4.5 during the first 12~16 hrs of fermentation when the pH was not controlled, resulting in ceasing the cell growth and hydrogen evolution and in degradation of 82 and 40% glucose after 24hrs of incubation from 1 and 2% glucose, respectively. When pH was controlled to 5.5, glucose was consumed completely and resulted in increasing hydrogen production approximately 38~50% compared to the experiments without the pH control. C. butyricum NCIB 9576 produced hydrogen gas approximately 644, 1,700 and 3,080 ml $H_2$/l-broth with 0.5, 1 and 2% lactose, respectively and the maximum hydrogen production rates were 41, 141 and 179ml $H_2$/hr/l-broth, respectively. All of the lactose added was degraded completely during fermentation even though pH was not controlled. C. butyricum NCIB 9576 produced 183 and 709ml $H_2$/l-broth with 0.1 and 0.5% starch for 48 hrs, respectively, when pH was not controlled. The maximum rates of hydrogen gas production were 43 and 186ml $H_2$/l-broth, respectively and 80~100% of starch added was fermented. Approximately 107ml $H_2$/l-broth was produced using 1% glycerol by C. butyricum NCIB 9576 and the pH was maintained higher than 6.1 during fermentation without pH control. The degradation of glucose, lactose, starch and glycerol by C. butyricum NCIB 9576 were affected by the pH of fermentation broth and the organic acids released during fermentation. The pH of feremtntation broth dropped to 4.2~4.6 after 12~14 hrs incubation when glucose was used as a substrate while pHs were maintained above pH 5 under the same experimental conditions when lactose, starch and glycerol were used. The organic solvents and acids produced during glucose fermentation were mainly ethanol, butyrate, acetate and a little of propionate, while butyrate was the main organic acids during the lactose, starch, and glycerol fermentation by C. butyricum NCIB 9576.

  • PDF

Evaluation of Different Yeast Species for Improving In vitro Fermentation of Cereal Straws

  • Wang, Zuo;He, Zhixiong;Beauchemin, Karen A.;Tang, Shaoxun;Zhou, Chuanshe;Han, Xuefeng;Wang, Min;Kang, Jinhe;Odongo, Nicholas E.;Tan, Zhiliang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.2
    • /
    • pp.230-240
    • /
    • 2016
  • Information on the effects of different yeast species on ruminal fermentation is limited. This experiment was conducted in a $3{\times}4$ factorial arrangement to explore and compare the effects of addition of three different live yeast species (Candida utilis 1314, Saccharomyces cerevisiae 1355, and Candida tropicalis 1254) at four doses (0, $0.25{\times}10^7$, $0.50{\times}10^7$, and $0.75{\times}10^7$ colony-forming unit [cfu]) on in vitro gas production kinetics, fiber degradation, methane production and ruminal fermentation characteristics of maize stover, and rice straw by mixed rumen microorganisms in dairy cows. The maximum gas production (Vf), dry matter disappearance (IVDMD), neutral detergent fiber disappearance (IVNDFD), and methane production in C. utilis group were less (p<0.01) than other two live yeast supplemented groups. The inclusion of S. cerevisiae reduced (p<0.01) the concentrations of ammonia nitrogen ($NH_3$-N), isobutyrate, and isovalerate compared to the other two yeast groups. C. tropicalis addition generally enhanced (p<0.05) IVDMD and IVNDFD. The $NH_3$-N concentration and $CH_4$ production were increased (p<0.05) by the addition of S. cerevisiae and C. tropicalis compared with the control. Supplementation of three yeast species decreased (p<0.05) or numerically decreased the ratio of acetate to propionate. The current results indicate that C. tropicalis is more preferred as yeast culture supplements, and its optimal dose should be $0.25{\times}10^7$ cfu/500 mg substrates in vitro.

Partial Pressures of $CO_2\;and\;H_2$ and Fate of By-products in Anaerobic Bio-Hydrogen Fermentation (혐기성 생물수소 발효에서 이산화탄소 및 수소의 분압과 부산물의 거동)

  • Park, Woo-Shin;Kim, In-S.
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.408-412
    • /
    • 2005
  • In a previous research, it has been found that it could be possible to increase the partial pressure of hydrogen and hydrogen yield by scavenging the $CO_2$ from the heads pace of reactor. In this research, the positive and negative effects of the $CO_2$ scavenging especially on the fate of by-products were investigated by a batch experiment. Production and conversion of by-products had critical relationships with hydrogen evolution and consumption. The maximum hydrogen fraction in the headspace was increased from 66.4 to 91.2% by removing the $CO_2$ in the headspace and the degradation rate of glucose was also enhanced. The removal of $CO_2$ effectively hindered the homoacetogenesis but caused several negative phenomena. The degradation of ethanol, one of the main products, was inhibited by the high partial pressure of hydrogen and/or the absence of $CO_2$. Also it was observed that other by-products such as propionate, propanol, acetone, etc. could not be degraded further after produced from glucose. On the other hand, solventogenesis was not observed in spite of the high hydrogen partial pressure apart from previous researches and it might hinder the excess production of acetate, which could cause overall inhibition. From this research, it could be implicated that the $CO_2$ scavenging method could be recommended if the fermentation was purposed to produce hydrogen and ethanol.