• Title/Summary/Keyword: Properties of materials

Search Result 22,391, Processing Time 0.061 seconds

Effect of Mixing condition of raw materials on the Thermal Properties of the Exothermic & Insulating Materials (원료 배합조건에 따른 발열보온재의 열적 특성)

  • Kim, D.J.;Shin, D.Y.;Byun, S.Y.;Wi, C.H.;You, B.D.;Oh, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.118-126
    • /
    • 2009
  • The change of the thermal properties of exothermic & insulating materials with mixing condition of raw materials which is the most important factor for exothermic & insulating materials was investigated by using the evaluation system of the thermal properties of exothermic & insulating materials. In this study, the effect of the thermal properties of the exothermic & insulating materials such as exothermic properties, endothermic properties, insulating properties, maximum temperature of molten metal, ignition time of exothermic & insulating materials and temperature recovery time on the mixing ratio of reductant and oxidant, types of reductant, and particle sizes of reductants was examined. It could be expected to design the mixing condition of raw materials for various exothermic & insulating materials.

  • PDF

Effect of Mixing Condition of Raw Materials on the Thermal Properties of the Exothermic & Insulating (원료 배합조건에 따른 발열보온재의 열적 특성)

  • Kim, D.J.;Shin, D.Y.;Byun, S.Y.;Wi, C.H.;Hong, S.H.;You, B.D.;Oh, S.H.
    • Transactions of Materials Processing
    • /
    • v.18 no.5
    • /
    • pp.401-409
    • /
    • 2009
  • The change of the thermal properties of exothermic and insulating materials with the mixing condition of raw materials which is the most important factor for exothermic & insulating materials was investigated by using the evaluation system of the thermal properties of exothermic and insulating materials. In this study, the effect of the thermal properties of the exothermic & insulating materials such as exothermic properties, endothermic properties, insulating properties, maximum temperature of molten metal, ignition time of exothermic & insulating materials and temperature recovery time on the mixing ratio of reductant and oxidant, types of reductant, and particle sizes of reductants was examined. It could be expected to design the mixing condition of raw materials for various exothermic and insulating materials.

Research Trends of High-entropy Alloys (고엔트로피 합금의 연구동향)

  • Park, Pureunsol;Lee, Ho Joon;Jo, Youngjun;Gu, Bonseung;Choi, Won June;Byun, Jongmin
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.515-527
    • /
    • 2019
  • High-entropy alloys (HEAs) are generally defined as solid solutions containing at least 5 constituent elements with concentrations between 5 and 35 atomic percent without the formation of intermetallic compounds. Currently, HEAs receive great attention as promising candidate materials for extreme environments due to their potentially desirable properties that result from their unique structural properties. In this review paper, we aim to introduce HEAs and explain their properties and related research by classifying them into three main categories, namely, mechanical properties, thermal properties, and electrochemical properties. Due to the high demand for structural materials in extreme environments, the mechanical properties of HEAs including strength, hardness, ductility, fatigue, and wear resistance are mainly described. Thermal and electrochemical properties, essential for the application of these alloys as structural materials, are also described.

Magnetically Soft Nanomaterials Obtained by Devitrification of Metallic Glasses

  • Kulik, Tadeusz;Ferenc, Jaroslaw;Kowalczyk, Maciej;Xiubing, Liang;Nedelko, Natalya
    • Journal of Magnetics
    • /
    • v.9 no.2
    • /
    • pp.65-68
    • /
    • 2004
  • Magnetically soft nanomaterials obtained by controlled crystallisation of metallic glasses are the newest group of materials for inductive components. In particular, research is carried out in the field of alloys for high temperature applications. This kind of materials must meet two basic requirements: good magnetic properties and stability of properties and structure. In the present work the magnetic properties and structure of Fe-Co-Hf-Zr-Cu-B (HIDTPERM-type) alloys were investigated, as well as their stability. Differential thermal analysis, (DTA), X-ray diffractometry (XRD), transmission electron microscopy (TEM), magnetometry (VSM) and quasistatic hysteresis loop recording were used to characterise structure and properties of the alloys investigated. Optimisation against properties and their stability was performed, resulting in formulation of chemical composition of the optimum alloy, as well as its heat treatment.

Evaluation System of the Thermal Properties of the Exothermic & Insulating Materials (발열 보온재의 특성평가 시스템 구축)

  • Shin, D.Y.;Kim, D.J.;Jun, B.H.;You, B.D.;Kim, N.S.;Oh, S.H.
    • Transactions of Materials Processing
    • /
    • v.17 no.5
    • /
    • pp.356-363
    • /
    • 2008
  • An evaluation system of the thermal properties of exothermic & insulating materials was developed. By measuring the power supply of the induction furnace, the thermal property of exothermic & insulating materials could be evaluated with high reproducibility at elevated temperature of molten steel. The thermal properties of exothermic & insulating materials were affected by mixing condition of raw materials. The effect of main components of exothermic & insulating materials such as metallic aluminum and $Fe_2O_3$ powder on the exothermic and insulating properties was examined. It could be expected to design and develop various exothermic & insulating materials by means of the evaluation system of the thermal properties.

Study of the Enhancement of Magnetic Properties of NdFeB Materials Fabricated by Modified HDDR Process

  • Fu, Meng;Lian, Fa-zeng;Wang, jie-Ji;Pei, Wen-Ii;Chen, Yu-lan;Yang, Hong-cai
    • Journal of Magnetics
    • /
    • v.9 no.4
    • /
    • pp.109-112
    • /
    • 2004
  • The HDDR (Hydrogenation-Disproportionation-Desorption-Recombination) process is a special method to produce anisotropic NdFeB powders for bonded magnet. The effect of the modified HDDR process on magnetic properties of $Nd_2Fe_{14}B$-based magnet with several composition $Nd_{11.2}Fe_{66.5-x}Co_{15.4}B_{6,8}Zr{0.1}Ga_x(x=0{\sim}1.0)$ and that of microelement Ga, disproportional temperature and annealing temperature on $_jH_c$, grain size were investigated in order to produce anisotropic powder with high magnetic properties. It was found that modified HDDR process is very effective to enhance magnetic properties and to fine grain size. The addition of Ga could change disproportionation character remarkably of the alloy and could improve magnetic properties of magnet powder. Increasing annealing temperature induces significant grain growth. And grain size produced by modified HDDR process is significantly smaller than those produced by conventional HDDR process.

Influence of Allylamine Plasma Treatment Time on the Mechanical Properties of VGCF/Epoxy

  • Khuyen, Nguyen Quang;Kim, Jin-Bong;Kim, Byung-Sun;Lee, Soo
    • Advanced Composite Materials
    • /
    • v.18 no.3
    • /
    • pp.221-232
    • /
    • 2009
  • The allylamine plasma treatment is used to modify the surface properties of vapor grown carbon fibers (VGCF). It is to improve the interfacial bonding between the VGCF and epoxy matrix. The allylamine plasma process was performed by batch process in a vacuum chamber, using gas injection followed by plasma discharge for the durations of 20, 40 and 60 min. The interdependence of mechanical properties on the VGCF contents, treatment time and interfacial bonding between VGCF/ep was investigated. The interfacial bonding between VGCF and epoxy matrix was observed by scanning electron microscopy (SEM) micrographs of nanocomposites fracture surfaces. The changes in the mechanical properties of VGCF/ep, such as the tensile modulus and strength were discussed. The mechanical properties of allylamine plasma treated (AAPT) VGCF/ep were compared with those of raw VGCF/ep. The tensile strength and modulus of allyamine plasma treated VGCF40 (40 min treatment)/ep demonstrated a higher value than those of other samples. The mechanical properties were increased with the allyamine plasma treatment due to the improved adhesion at VGCF/ep interface. The modification of the carbon nanofibers surface was observed by transmission electron microscopy (TEM). SEM micrographs showed an excellent dispersion of VGCF in epoxy matrix by ultrasonic method.

Investigation of the Thermal-to-Electrical Properties of Transition Metal-Sb Alloys Synthesized for Thermoelectric Applications

  • Jong Min Park;Seungki Jo;Sooho Jung;Jinhee Bae;Linh Ba Vu;Kwi-Il Park;Kyung Tae Kim
    • Journal of Powder Materials
    • /
    • v.31 no.3
    • /
    • pp.236-242
    • /
    • 2024
  • The development of thermoelectric (TE) materials to replace Bi2Te3 alloys is emerging as a hot issue with the potential for wider practical applications. In particular, layered Zintl-phase materials, which can appropriately control carrier and phonon transport behaviors, are being considered as promising candidates. However, limited data have been reported on the thermoelectric properties of metal-Sb materials that can be transformed into layered materials through the insertion of cations. In this study, we synthesized FeSb and MnSb, which are used as base materials for advanced thermoelectric materials. They were confirmed as single-phase materials by analyzing X-ray diffraction patterns. Based on electrical conductivity, the Seebeck coefficient, and thermal conductivity of both materials characterized as a function of temperature, the zT values of MnSb and FeSb were calculated to be 0.00119 and 0.00026, respectively. These properties provide a fundamental data for developing layered Zintl-phase materials with alkali/alkaline earth metal insertions.

Preparation and Properties of 2D Materials

  • Byungjin Cho;Yonghun Kim
    • Nanomaterials
    • /
    • v.10 no.4
    • /
    • pp.764-767
    • /
    • 2020
  • Since the great success of graphene, atomically thin layered nanomaterials-called two-dimensional (2D) materials-have attracted tremendous attention due to their extraordinary physical properties. In particular, van der Waals heterostructured architectures based on a few 2D materials, named atomic scale Lego, have been proposed as unprecedented platforms for the implementation of versatile devices with a completely novel function or extremely high performance, shifting the research paradigm in materials science and engineering [1]. Thus, diverse 2D materials beyond existing bulk materials have been widely studied for promising electronic, optoelectronic, mechanical, and thermoelectric applications. In particular, this Special Issue includes the recent advances in unique preparation methods, such as exfoliation-based synthesis and the vacuum-based deposition of diverse 2D materials, as well as their device applications based on their interesting physical properties. This editorial consists of the following two sections: Preparation Methods of 2D Materials and Properties of 2D Materials.

Evolution of Microstructure and Mechanical Properties of a Ni Base Superalloy during Thermal Exposure (니켈기 초내열합금의 열간노출에 따른 미세조직 및 기계적 특성 변화)

  • Kim, In-Soo;Choi, Baig-Gyu;Jung, Joong-Eun;Do, Jeong-Hyeon;Jung, In-Yong;Jo, Chang-Yong
    • Journal of Korea Foundry Society
    • /
    • v.36 no.5
    • /
    • pp.159-166
    • /
    • 2016
  • The microstructural evolution of a cast Ni base superalloy, IN738LC, has been investigated after long term exposure at several temperatures. Most of the fine secondary ${\gamma}^{\prime}$ particles resolved after 2000 hour exposure at $816^{\circ}C$. At higher temperatures of $871^{\circ}C$ and $927^{\circ}C$, secondary ${\gamma}^{\prime}$ resolved after 1000 hours of exposure, and cuboidal primary ${\gamma}^{\prime}$ grew with exposure time. During the thermal exposure, ${\sigma}$ phase formed at all tested temperatures, and ${\eta}$ phase was observed around interdendritic regions due to carbide degeneration. The influence of microstructural evolution during thermal exposure on the mechanical properties has been analyzed. The effects of ${\gamma}^{\prime}$ particle growth are more pronounced on the high temperature creep properties than on the room temperature tensile properties.