• 제목/요약/키워드: Propeller Wake

검색결과 165건 처리시간 0.022초

Statistical Prediction of Wake Fields on Propeller Plane by Neural Network using Back-Propagation

  • Hwangbo, Seungmyun;Shin, Hyunjoon
    • Journal of Ship and Ocean Technology
    • /
    • 제4권3호
    • /
    • pp.1-12
    • /
    • 2000
  • A number of numerical methods like Computational Fluid Dynamics(CFD) have been developed to predict the flow fields of a vessel but the present study is developed to infer the wake fields on propeller plane by Statistical Fluid Dynamics(SFD) approach which is emerging as a new technique over a wide range of industrial fields nowadays. Neural network is well known as one prospective representative of the SFD tool and is widely applied even in the engineering fields. Further to its stable and effective system structure, generalization of input training patterns into different classification or categorization in training can offer more systematic treatments of input part and more reliable result. Because neural network has an ability to learn the knowledge through the external information, it is not necessary to use logical programming and it can flexibly handle the incomplete information which is not easy to make a definition clear. Three dimensional stern hull forms and nominal wake values from a model test are structured as processing elements of input and output layer respectively and a neural network is trained by the back-propagation method. The inferred results show similar figures to the experimental wake distribution.

  • PDF

원유운반선 프로펠러의 모형 및 실선 축척 반류에서의 공동현상과 실선에서 관측된 공동현상의 비교 (Comparison of Cavitation Patterns between Model Scale Observations using Model and Full-Scale Wakes and Full Scale Observations for a Propeller of Crude Oil Carrier)

  • 최길환;장봉준;허재욱;조대승
    • 대한조선학회논문집
    • /
    • 제48권1호
    • /
    • pp.15-22
    • /
    • 2011
  • In this paper, cavitation patterns of model tests were compared with those of full-scale measurement for a propeller of crude oil carrier which was suffered from erosions on suction side of blade tip region. Cavitation tests were performed at design and ballast draft using model and full scale nominal wakes. A model ship and wire mesh method was used for the simulation of wake patterns of model nominal wakes. For the prediction of full-scale wake patterns, a RANS solver(Fluent 6.3) was used and wire mesh method was used for the simulation of the full scale wakes. Comparison results show that cavitation patterns using predicted full-scale wake patterns are closer to cavitation patterns of full-scale measurement at ballast draft condition. Also, cloud cavitations were observed on the position of eroded area at both full-scale measurement and cavitation tests using simulated full-scale wake patterns.

A numerical investigation on the nominal wake of KVLCC2 model ship in regular head waves

  • Shin, Hyun-Woo;Paik, Kwang-Jun;Jang, Yoon-Ho;Eom, Myeoung-Jin;Lee, Sungwook
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.270-282
    • /
    • 2020
  • Analysis: of the propulsion performance considering ship motion in waves is an important factor for the efficient operation of a ship. The interaction between the propeller and the free surface due to the ship motion in waves has a significant influence on the propulsion performance. However, most recent studies regarding the hydrodynamic performance of ships in waves focus on the added resistance, and experimental and numerical data on the propulsion performance considering the ship motion in waves are very rare. In this study, a numerical investigation of the nominal wake in regular head waves is performed for a KVLCC2 model ship for the fully-loaded condition. Phase-averaged wake fields for one period are compared with experimental data measured using Stereo PIV, showing good agreement. The effect of the ship motion on the characteristics of the wake field and the axial velocity in the propeller plane are investigated while varying the wave length.

프로펠러 효과를 반영 가능한 패널 기반 신속 공력 해석 기법 개발 (Development of Panel-Based Rapid Aerodynamic Analysis Method Considering Propeller Effect)

  • 태명식;이예빈;오세종;신정우;임주섭;박동훈
    • 한국항공우주학회지
    • /
    • 제49권2호
    • /
    • pp.107-120
    • /
    • 2021
  • 전기동력 분산추진 비행체는 다수의 프로펠러로 인하여 복잡한 프로펠러 후류 유동 및 기체와의 상호간섭이 발생한다. 이에 따라 초기설계 단계에서는 다양한 형상과 비행 조건에 대하여 프로펠러 구동 효과를 반영한 신속 공력 및 하중 해석이 요구된다. 본 연구에서는 프로펠러 효과를 고려할 수 있는 패널 기반의 효율적인 공력해석 기법을 개발, 검증하였다. Actuator Disk Theory(ADT)에 기반하여 프로펠러 후류 영역의 유도 속도장을 계산하고, 이를 3차원 정상 용출-중첩 패널기법의 비행체 표면 경계조건에 반영하였다. 한국항공우주연구원의 Quad Tilt Propeller(QTP) 비행체 단독 프로펠러와 선행 실험 연구의 프로펠러-날개 형상을 벤치마크 문제로 선정하여 해석을 수행하였다. Actuator 기법 기반의 전산유체역학(CFD) 결과와의 비교를 통해 프로펠러의 후류 속도장과 프로펠러 구동에 따른 날개의 공력하중 분포 변화를 검증하였다. 자율비행 개인용 항공기(Optional Piloted PAV, OPPAV)와 QTP 공력해석에 기법을 적용하고, CFD와의 해석 소요 시간 및 결과 비교, 분석을 통해 기법의 실용성과 타당성을 확인하였다.

선체반류를 고려한 프로펠러 최적 스큐화 (Propeller Skew Optimization Considering Varying Wake Field)

  • 문일성;김건도;유용완;류민철;이창섭
    • 대한조선학회논문집
    • /
    • 제40권5호
    • /
    • pp.26-35
    • /
    • 2003
  • Propellers operating in a given nonuniform ship wake generate unsteady loads leading to undesirable stern vibration problems. The skew is known to be the most proper and effective geometric parameter to control or reduce the fluctuating forces on the shaft. This paper assumes the skew profile as either a quadratic or a cubic function of the radius and determines the coefficients of the polynomial function by applying the simplex method. The method uses the converted unconstrained algorithm to solve the constrained minimization problem of 6-component shaft excitation forces. The propeller excitation was computed either by applying the two-dimensional gust theory for quick estimation or by the fully three-dimensional unsteady lifting surface theory in time domain for an accurate solution. A sample result demonstrates that the shaft forces can be further reduced through optimization from the original design.

Development of KD-Propeller Series Using a New Blade Section

  • Lee, Jin-Tae;Kim, Moon-Chan;Ahn, Jong-Woo;Kim, Ho-Chung
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • 제1권1호
    • /
    • pp.76-90
    • /
    • 1993
  • A new propeller series is developed using the newly developed blade section (KH 18 section) which has better cavitation characteristics and higher lift-drag ratio at wade angle-of-attack range than a conventional section. The radial patch distribution of the new series propellers is variable stance they were designed adaptively to a typical wake distribution. Basic geometric particulars of the series propellers. such as chord length, thickness, skew and rake distributions, are determined on the basis of recent full scale propeller geometric data. The series is developed for propellers having 4 blades, and blade area ratios of 0.3, 0.45, 0.6 and 0.75. Mean pitch ratios are varied as 0.5, 0.6, 0.7, 0.95 and 1.1 for each blade area ratio. The new propeller series consists of 20 propellers and is named as the KD(KRISO-DAEWOO)-propeller series. Propeller open-water tests are performed at the towing tank, and cavitation observation tests and fluctuating pressure tests are carried out at the cavitation tunnel of KRISO. $B_{p}-\delta$ curves, which can be used to select the optimum propeller diameter at the preliminary design stage, are derived from a regression analysis of the propeller open-water test results. The KD-cavitation chart is derived from the cavitation observation test results by choosing the local maximum lift coefficient and the local cavitation number as parameters. The cavity extent predicted by the KD-cavitation chart would be more accurate compared to that by an existing cavitation charts, such as the Burrll's cavitation chart, since the former is derived from the cavitation observation test results in a typical ship's wake, while the lather is derived from the test results in a uniform flow.

  • PDF

프로펠러 날개의 동적 구조해석 시스템 개발 (A Dynamic Structural Analysis System for Propeller Blades)

  • 노인식;이정렬;이현엽;이창섭
    • 대한조선학회논문집
    • /
    • 제41권2호
    • /
    • pp.114-120
    • /
    • 2004
  • Propeller blades have complex airfoil section type geometry and the thickness is continuously varied to both its length and cord-wise direction. in the present research, the finite element analysis program PROSTEC (Propeller Stress Evaluation Code) is developed to calculate the structural responses of propeller blades in irregular ship wake field. To represent the curved and skewed geometry of propeller blades accurately, 20-node curved solid element using the quadratic shape function is adopted. Input data for the analysis including the geometry and pressure distribution of propeller blades can be generated automatically from the propeller design program. And to visualize the results of analysis on windows system conveniently, the post processor PROSTEC-POST is developed.

CFD를 이용한 모형선과 실선 스케일의 반류 비교 (Wake Comparison between Model and Full Scale Ships Using CFD)

  • 양해욱;김병남;유재훈;김우전
    • 대한조선학회논문집
    • /
    • 제47권2호
    • /
    • pp.150-162
    • /
    • 2010
  • Assessment of hydrodynamic performance of a ship hull has been focused on a model ship rather than a full-scale ship. In order to design the propeller of a ship, model-scale wake is often extended to full-scale based upon an empirical method or designer's experience, since wake measurement data for a full-scale ship is very rare. Recently modern CFD tools made some success in reproducing wake field of a model ship, which implicates that there are some possibilities of the accurate prediction of full-scale wakes. In this paper firstly the evaluation of model-scale wake obtained by Fluent package was performed. It was found that CFD calculation with the Reynolds-stress model (RSM) provided much better agreement with wake measurement in the towing tank than with the realizable k-$\varepsilon$ model (RKE). In the next full-scale wake was calculated using the same package to find out the difference between model and full-scale wakes. Three hull forms of KLNG, KCS, KVLCC2 having measurement data open for the public, were chosen for the comparison of resistance, form factor, and propeller plane wake between model ships and full-scale ships.

안팎 형상이 비대칭인 쌍동선의 자항성능 CFD 해석에 관한 연구 (A Study on the Self-Propulsion CFD Analysis for a Catamaran with Asymmetrical Inside and Outside Hull Form)

  • 이종현;박동우
    • 해양환경안전학회지
    • /
    • 제30권1호
    • /
    • pp.108-117
    • /
    • 2024
  • 본 연구에서는 너클 라인이 다수 존재하면서 안팎 형상이 비대칭으로 설계된 특이점을 갖는 쌍동선의 자항성능을 예측하기 위해 CFD 해석을 수행하였고, 해석 기법에 따른 차이를 파악하기 위해 MRF(Moving Reference Frame) 기법과 SDM(Sliding Mesh) 기법을 적용하였다. MRF 기법을 적용한 경우에는 time step당 프로펠러를 1˚ 회전시켰고, SDM 기법의 경우 10˚, 5˚, 1˚씩 회전시키며 각 기법별 예측된 자항성능을 비교하였다. 자항점 추정을 위한 몇 가지 프로펠러 회전수에서의 해석 결과 중 프로펠러의 토크는 기법에 따른 차이가 거의 없었지만 추력 및 선체가 받는 저항은 MRF 기법보다는 SDM 기법을 적용했을 때 더 낮게, SDM 기법의 time step당 프로펠러 회전각이 작을수록 높게 계산되었다. 선형 내삽을 통해 추정된 자항점의 프로펠러 회전수, 추력, 토크와 실선 확장법을 사용해 추정된 실선의 전달동력, 반류 계수, 추력 감소 계수 및 프로펠러 회전수도 동일한 경향을 보였으며, 대부분의 자항효율은 반대의 경향을 보였다. 프로펠러 후류의 경우 MRF 기법을 적용했을 때 정확도가 떨어졌고, SDM 기법의 time step당 프로펠러 회전각에 따라 표현되는 후류의 차이는 거의 없었다.

Downward Load Prediction and Reduction Strategy for QTP UAV

  • Park, Youngmin;Choi, Jaehoon;Lee, Hakmin;Kim, Cheolwan
    • 항공우주시스템공학회지
    • /
    • 제15권2호
    • /
    • pp.10-15
    • /
    • 2021
  • The propeller wake of tiltrotor-type aircrafts, such as TR-60 and quad tilt propeller (QTP) UAV, in hover substantially impinges the upper surface of the primary wing and generates a downward load. This load is directly proportional to the thrust of the propeller and reduces the available payload. Therefore, wing and nacelle mechanisms should be carefully designed to reduce downward load. This study conducted a numerical analysis of the rotating propeller in hover to predict the downward load of a QTP UAV. An unsteady three-dimensional Navier-Stokes solver was used along with a sliding mesh for the simulation of the rotating propeller. To reduce the downward load, the tilting mechanisms of the partial wing and nacelle were simultaneously introduced and numerically analyzed. Finally, the downward load was predicted by 14% of isolated propeller thrust; further, the downward load could be reduced by adopting the partial wing and nacelle tilting concept.