• 제목/요약/키워드: Propellant Pressurization

검색결과 51건 처리시간 0.024초

가압제어용 둥근 유입형 오리피스 특성 (Rounded Entry Orifice Characteristics for Pressurization Control)

  • 정용갑;권오성;장제선;신동순;한상엽
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.401-404
    • /
    • 2008
  • Pressurization system in a liquid-propellant launcher supplies the controlled gas into the ullage volume of propellant tanks to feed propellants to combustion chamber by pressurizing propellants stored in propellant tanks. The ullage part of propellant tank should be constantly pressurized to supply the propellants stored in propellant tanks to turbo-pump or combustion chamber by pressurant pressurization system. Pressurant used to pressurize propellants is generally stored in a series of tanks at cryogenic temperature and high preassure inside an oxidizer tank. The reason is to store the quantity of pressurant as much as possible and to make pressurant tanks as small as (i.e. as light as) possible. However for test convenience pressurant tank is located at STP (standard temperature and pressure) environment in this study. Orifices are widely adapted to several pressurization systems in liquid rocket propulsion systems. Discharge coefficients of orifices are essentially needed for the optimized design of pressurization system in liquid rocket propulsion system. For this study gaseous nitrogen was served as pressurant and rounded entry orifices were employed. The forty-two (42) rounded entry orifices (the radii of curvatures are 0.5 and 1.0) have been tested experimentally in the supersonic flow region. The discharge coefficients of rounded entry orifices with inside diameters ranging from about 1.4 to 5.0mm was measured with 0.95 ${\sim}$ 0.99.

  • PDF

헬륨 가압시스템에 대한 온도특성 연구(II) (Study on Temperature Characteristic of Pressurization System Using Helium Gas)

  • 정용갑;조남경;길경섭;김영목
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제24회 춘계학술대회논문집
    • /
    • pp.168-175
    • /
    • 2005
  • 액체로켓 추진시스템에서 가압시스템은 발사체 추진제 탱크의 얼리지 공간에 제어된 가스를 공급하는 것이다. 가압시스템에서 고온 가스 열교환기를 적용하는 데는 가압제의 비용적을 증가시켜 전체 발사체 시스템의 중량을 감소시키는 장점이 있다. 가압시스템 성능에 있어서 주목할 만한 개선점은 극저온 시스템에서 얻어질 수 있다. 이러한 경우 가스 공급은 극저온 탱크 내부에 저장되어 진다. 극저온 가압제의 온도 특성은 가압시스템에서 구성 단품을 개발하는데 있어서 매우 중요하다. 본 연구에서는 SINDA/FLUINT를 이용한 수치적 모델링과 PTF(Propellant-feeding Test Facility)에서 수행된 실험에 대하여 해석 및 시험이 수행되었다.

  • PDF

추진제 탱크 가압 시스템의 최적 구성 (Optimum Configuration for Pressurization System of Propellant Tank)

  • 정영석;조남경;오승협
    • 항공우주기술
    • /
    • 제9권1호
    • /
    • pp.133-142
    • /
    • 2010
  • 발사체 추진기관은 추진제 탱크, 가압시스템, 추진제 충전/배출 시스템, 밸브 구동 시스템, 퍼지 시스템 등으로 구성되어 있다. 이 중에서 가압시스템은 온보드 실시간 제어 시스템을 포함하는 유일한 시스템으로 가장 중요한 서브시스템이다. 그러므로 추진제의 탑재량 선정 및 추진제 공급 시스템 개념설계 단계에서 가장 먼저 고려되어야 한다. 본 논문에서는 여러 타 발사체의 가압시스템에 대해 자료 조사를 수행하였고 국산화시 개발 가능한 구성을 정리하였으며, 최종적으로 시스템 중량 비교, 운용/안전/신뢰성/확장성 등을 비교 검토하여 최적 구성을 선정하였다.

액체로켓 추진기관의 추진제탱크 가압시스템 최적변수 설계 방법 (The Way of Determinating the Optimal Parameters of the Propellant Tank Pressurization Gas in the Feeding System for Liquid Rocket Engine)

  • 베르샤드스키;조기주;임석희;정영석;조규식;오승협
    • 한국추진공학회지
    • /
    • 제9권2호
    • /
    • pp.62-69
    • /
    • 2005
  • 액체로켓 추진기관의 추진제 공급계 개발을 위한 추진제 탱크 가압시스템의 주요 변수들을 계산하는 설계방법이 본 논문에서 제시되었다 가압 유체의 공급 조건들이 추진제 탱크 내부에서 발생하는 열역학적 프로세스의 효율성에 미치는 영향을 분석하였고 이를 바탕으로 하여 추진제 탱크 입구에서의 가압 유체의 최적 공급온도, 공급 속도를 계산하였다.

추진제 탱크 가압용 솔레노이드 밸브 개발 시험 (The Solenoid Valve Development Tests for Propellant Tank Pressurization System)

  • 김병훈;고현석;권오성;한상엽
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.813-816
    • /
    • 2011
  • 추진제 탱크 가압 시스템 적용을 위한 솔레노이드 밸브를 제작하여 작동시험 및 기밀시험을 수행하였다. 시험 결과 제작된 모든 밸브에서 작동 시간은 밸브 성능 요구 조건을 만족하고 있다. 그러나 기밀시험 결과 솔레노이드 밸브 내부에서 일부 누설이 있는 것을 발견하였다. 솔레노이드 밸브 분해를 통해 누설은 용접에 의한 Seat면의 손상이 주요 원인이라는 것을 확인하였다. 본 연구를 통해 추진제 탱크 가압용 솔레노이드 밸브 개발 가능성을 확인하였다.

  • PDF

버블링을 이용한 추진기관 가압 시스템에서 극저온 추진제 변수의 결정 (Determination of The Cryogenic Propellant Parameters at Pressurization of The Propulsion System Tank by Bubbling)

  • 베르샤드스키;정영석;임석희;조규식;조기주;강선일;오승협
    • 한국추진공학회지
    • /
    • 제10권4호
    • /
    • pp.1-10
    • /
    • 2006
  • 본 논문에서는 극저온 추진제 탱크가 가스 헬륨(GHe) 버블링에 의해 가압될 때 극저온 추진제의 열역학 변수들에 대한 계산 방법을 제시하였다. 헬륨 분사를 이용한 액체 산소(LOX)와 액체 수소($LH_2$) 탱크의 가압 과정에서의 극저온 추진제 온도와 추진제로 용해되는 가스 헬륨의 질량을 분석하였다. 해석 결과를 통해 헬륨 버블링이 LOX와 $LH_2$의 열역학적 변수들에 어떻게 영향을 주는지 확인하였다. 제시된 계산 방법을 통해 가압 시스템으로써 헬륨 버블링의 실현 가능성과 헬륨 버블링을 이용한 가압 시스템의 최적화가 가능할 것이다.

극저온 헬륨가스 가압시스템에 대한 온도특성 연구(I) (Study on the Temperature Characteristic of Pressurization System Using Cryogenic Helium Gas)

  • 정용갑;김유
    • 한국추진공학회지
    • /
    • 제9권3호
    • /
    • pp.66-73
    • /
    • 2005
  • 액체로켓 추진시스템에서 가압시스템은 발사체 추진제 탱크의 얼리지 공간에 제어된 가스를 공급하는 것이다. 가압시스템에서 고온 가스 열교환기를 적용하는 데는 가압제의 비체적을 증가시켜 전체 발사체 시스템의 중량을 감소시키는 장점이 있다. 가압시스템 성능에 있어서 주목할 만한 개선점은 극저온 시스템에서 얻어질 수 있다. 이러한 경우 가스 공급은 극저온 탱크 내부에 저장되어 진다. 본 연구에서는 극저온 추진제를 모의(模擬)하기 위하여 액체 질소를 사용하였다. 극저온 가압제의 온도 특성은 가압시스템에서 구성 단품을 개발하는데 있어서 매우 중요하다. 본 연구에서는 SINDA/FLUINT를 이용한 이론적 해석과 PTF에서 수행된 실험 결과에 대하여 비교 분석이 수행되었다.

극저온 추진제탱크 가압효율 계산 (Calculation of pressurization efficiency of cryogenic propellant tank)

  • 권오성;김병훈;길경섭;한상엽
    • 항공우주기술
    • /
    • 제12권2호
    • /
    • pp.83-90
    • /
    • 2013
  • 극저온 추진제탱크에서의 추진제 배출 시험데이터와 해석 프로그램을 이용하여 극저온 추진제탱크 얼리지와 관련된 에너지 흐름을 파악하고 추진제탱크의 가압효율을 계산하였다. 얼리지와 관련된 에너지 항목을 결정하고 각 항목의 계산방법을 설명하였다. 탱크의 압력, 탱크로 유입되는 가압가스의 온도를 달리한 세 가지 경우의 시험데이터를 사용하였는데, 시험조건 범위에서 가압효율은 13.9%~19.3%로서 상당히 낮게 나타났다. 탱크로 유입된 에너지 중 외부로 손실되는 에너지가 55.2%~67.6%였으며 이중 탱크 벽면을 통한 손실이 가장 큰 비중을 차지하였다. 탱크로 유입되는 가압가스의 온도가 같을 경우, 탱크 압력에 관계없이 각 에너지 항목의 상대적인 크기는 거의 동일하였다. 시험데이터를 이용하여 collapse factor를 계산하였고 열손실 비율과의 관계를 살펴보았다.

고속가압에 의한 고체추진제의 균열진전평가에 관한 연구 (A Study on Crack Propagation of Solid Propellant by Rapid Pressurization)

  • 하재석;김재훈;양호영
    • 한국추진공학회지
    • /
    • 제16권6호
    • /
    • pp.79-84
    • /
    • 2012
  • 창이 있고 밀폐되어있는 시험챔버를 사용하여 고속가압에 의한 고체추진제의 균열진전시험을 수행하였다. 고체추진제 예균열 시험편은 시험챔버내에 설치되고, 축압기 내에 고압으로 축적된 질소가스는 고속가압을 위해 가압밸브를 통해 시험챔버를 가압한다. 시험챔버 내의 압력이 설정압력에 도달하게 되면 가압밸브는 닫히고 배기밸브를 통해 시험챔버는 감압이 된다. 본 논문에서는 시험결과로부터 시간에 따른 시험챔버압력을 나타내는 압력-시간 선도를 얻었으며, 선도로부터 가압비(${\Delta}P/{\Delta}t$)를 계산하였다. 3가지 가압비 64.34, 73.86, 85.44 MPa/s 에 대한 시험을 수행하였으며, 가압비에 따른 균열진전 길이를 측정하였다. 또한 고속 디지털카메라촬영을 통해 균열진전과정을 분석하였다.

고속압력하중부가에 의한 고체추진제의 균열진전평가에 관한 연구 (A Study on Crack Propagation of Solid Propellant by Rapid Pressurization)

  • 하재석;김재훈;양호영
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.539-544
    • /
    • 2012
  • 창이 있고 밀폐되어있는 시험챔버를 사용하여 고속압력하중부가에 의한 고체추진제의 균열진전시험을 수행하였다. 고체추진제 예균열 시험편은 시험챔버내에 설치되고, 고속압력하중을 부가하기 위해 어큐뮬레이터 내에 고압으로 축적된 질소가스를 가압밸브를 통해 시험챔버 내에 가압하였으며, 시험챔버내의 압력이 설정압력에 도달하게 되면 가압밸브는 닫히고 배기밸브를 통해 시험챔버는 감압이된다. 시험결과로부터 시간에 따른 시험챔버압력을 나타내는 압력-시간 선도를 얻었으며, 선도로부터 가압비(${\Delta}P/{\Delta}t$)를 계산하였다. 3가지 가압비 64.34, 73.86, 85.44 MPa/s 에 대한 시험을 수행하였으며, 가압비에 따른 균열진전길이가 측정되었다. 또한 고속 디지털카메라촬영을 통해 균열진전과정을 분석하였다.

  • PDF