• Title/Summary/Keyword: Propagation Mechanism

Search Result 490, Processing Time 0.025 seconds

Performance Test of a Single Pulse Gun for Transverse Pressure Wave Generation (횡단압력파 발생을 위한 단일 펄스건의 압력파 성능시험)

  • Lee, Jongkwon;Song, Wooseok;Koo, Jaye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.8
    • /
    • pp.599-606
    • /
    • 2019
  • The pulse gun device is designed to identify the transverse pressure wave propagation/damping mechanism into the combustion flow field and in the combustion chamber according to the arrangement of multiple injectors. The manufactured pulse gun was tested to verify operability at the target combustion pressure and control of the pressure wave intensity. Gas nitrogen was used to pressurize the high-pressure tube and an OHP film of $100{\mu}m$ thickness was used for the diaphragm. To check the speed and intensity of the pressure waves, the dynamic and static pressure were measured using the pressure transducer. The performance test confirmed that the manufactured pulse gun can generate pressure waves with transverse characteristics that can be controled for strength depending on the supply pressure.

Interfacial Properties of Friction-Welded TiAl and SCM440 Alloys with Cu as Insert Metal (삽입금속 Cu를 이용한 TiAl 합금과 SCM440의 마찰용접 계면 특성)

  • Park, Sung-Hyun;Kim, Ki-Young;Park, Jong-Moon;Choi, In-Chul;Ito, Kazuhiro;Oh, Myung-Hoon
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.258-263
    • /
    • 2019
  • Since the directly bonded interface between TiAl alloy and SCM440 includes lots of cracks and generated intermetallic compounds(IMCs) such as TiC, FeTi, and $Fe_2Ti$, the interfacial strength can be significantly reduced. Therefore, in this study, Cu is selected as an insert metal to improve the lower tensile strength of the joint between TiAl alloy and SCM440 during friction welding. As a result, newly formed IMCs, such as $Cu_2TiAl$, CuTiAl, and $TiCu_2$, are found at the interface between TiAl alloy and Cu layer and the thickness of IMCs layers is found to vary with friction time. In addition, to determine the relationship between the thickness of the IMCs and the strength of the welded interfaces, a tensile test was performed using sub-size specimens obtained from the center to the peripheral region of the friction-welded interface. The results are discussed in terms of changes in the IMCs and the underlying deformation mechanism. Finally, it is found that the friction welding process needs to be idealized because IMCs generated between TiAl alloy and Cu act to not only increase the bonding strength but also form an easy path of fracture propagation.

Experimental study on air-water countercurrent flow limitation in a vertical tube based on measurement of film thickness behavior

  • Wan, Jie;Sun, Wan;Deng, Jian;Pan, Liang-ming;Ding, Shu-hua
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1821-1833
    • /
    • 2021
  • The gas-liquid counter-current flow limitation (CCFL) is closely related to efficient and safety operation of many equipment in industrial cycle. Air-water countercurrent flow experiments were performed in a tube with diameter of 25 mm to understand the triggering mechanism of CCFL. A parallel electrode probe was utilized to measure film thickness whereby the time domain and frequency domain characteristics of liquid film was obtained. The amplitude of the interface wave is small at low liquid flow rate while it becomes large at high liquid flow rate after being disturbed by the airflow. The spectral characteristic curve shows a peak-shaped distribution. The crest exists between 0 and 10 Hz and the amplitude decreases with the frequency increase. The analysis of visual observation and characteristic of film thickness indicate that two flooding mechanisms were identified at low and high liquid flow rate, respectively. At low liquid flow rate, the interfacial waves upward propagation is responsible for the formation of CCFL onset. While flooding at high liquid flow rate takes place as a direct consequence of the liquid bridging in tube due to the turbulent flow pattern. Moreover, it is believed that there is a transition region between the low and high liquid flow rate.

Multifactorial Traits of SARS-CoV-2 Cell Entry Related to Diverse Host Proteases and Proteins

  • You, Jaehwan;Seok, Jong Hyeon;Joo, Myungsoo;Bae, Joon-Yong;Kim, Jin Il;Park, Man-Seong;Kim, Kisoon
    • Biomolecules & Therapeutics
    • /
    • v.29 no.3
    • /
    • pp.249-262
    • /
    • 2021
  • The most effective way to control newly emerging infectious disease, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, is to strengthen preventative or therapeutic public health strategies before the infection spreads worldwide. However, global health systems remain at the early stages in anticipating effective therapeutics or vaccines to combat the SARS-CoV-2 pandemic. While maintaining social distance is the most crucial metric to avoid spreading the virus, symptomatic therapy given to patients on the clinical manifestations helps save lives. The molecular properties of SARS-CoV-2 infection have been quickly elucidated, paving the way to therapeutics, vaccine development, and other medical interventions. Despite this progress, the detailed biomolecular mechanism of SARS-CoV-2 infection remains elusive. Given virus invasion of cells is a determining factor for virulence, understanding the viral entry process can be a mainstay in controlling newly emerged viruses. Since viral entry is mediated by selective cellular proteases or proteins associated with receptors, identification and functional analysis of these proteins could provide a way to disrupt virus propagation. This review comprehensively discusses cellular machinery necessary for SARS-CoV-2 infection. Understanding multifactorial traits of the virus entry will provide a substantial guide to facilitate antiviral drug development.

Evaluation of Creep-Fatigue Damage in 304 Stainless Steel using Ultrasonic Non-Destructive Test (초음파 비파괴 검사를 이용한 AISI 304 스테인리스강의 크리프-피로 손상의 평가)

  • Lee, Sung Sik;Oh, Yong Jun;Nam, Soo Woo
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.12
    • /
    • pp.924-929
    • /
    • 2011
  • It is well known that grain boundary cavitation is the main failure mechanism in austenitic stainless steel under tensile hold creep-fatigue interaction conditions. The cavities are nucleated at the grain boundary during cyclic loading and grow to become grain boundary cracks. The attenuation of ultrasound depends on scattering and absorption in polycrystalline materials. Scattering occurs when a propagation wave encounters microstructural discontinuities, such as internal voids or cavities. Since the density of the creep-fatigue cavities increases with the fatigue cycles, the attenuation of ultrasound will also be increased with the fatigue cycles and this attenuation can be detected nondestructively. In this study, it is found that individual grain boundary cavities are formed and grow up to about 100 cycles and then, these cavities coalesce to become cracks. The measured ultrasonic attenuation increased with the cycles up to cycle 100, where it reached a maximum value and then decreased with further cycles. These experimental measurements strongly indicate that the open pores of cavities contribute to the attenuation of ultrasonic waves. However, when the cavities develop, at the grain boundary cracks whose crack surfaces are in contact with each other, there is no longer any open space and the ultrasonic wave may propagate across the cracks. Therefore, the attenuation of ultrasonic waves will be decreased. This phenomenon of maximum attenuation is very important to judge the stage of grain boundary crack development, which is the indication of the dangerous stage of the structures.

Hydro-mechanical coupling behaviors in the failure process of pre-cracked sandstone

  • Li, Tingchun;Du, Yiteng;Zhu, Qingwen;Ren, Yande;Zhang, Hao;Ran, Jinlin
    • Geomechanics and Engineering
    • /
    • v.24 no.6
    • /
    • pp.573-588
    • /
    • 2021
  • The interaction of cracks and water significantly affects the fracture mechanism of rocks. In this study, laboratory tests were conducted using sandstone samples containing a single fissure to explore the hydro-mechanical behaviors in the failure process of pre-cracked rocks. The internal crack characteristics were also analyzed using X-ray CT scanning. The results show that the confining pressure has the greatest effect on the mechanical properties (e.g., strengths, elastic modulus, and Poisson's ratio), followed by the fissure inclination and water pressure. At a lower fissure inclination, the confining pressure may control the type main cracks that form, and an increase in the water pressure increases the number of anti-wing cracks and the length of wing cracks and branch cracks. However, the fracture behaviors of samples with a higher fissure inclination are only slightly affected by the confining pressures and water pressures. The effect of fissure inclination on the internal crack area is reduced with the propagation from the fissure tips to the sample ends. The fissure inclination mainly affects the value of permeability but not affect the trend. The impact of pre-existing fissure on permeability is smaller than that of confining pressure and water pressure.

Question Similarity Measurement of Chinese Crop Diseases and Insect Pests Based on Mixed Information Extraction

  • Zhou, Han;Guo, Xuchao;Liu, Chengqi;Tang, Zhan;Lu, Shuhan;Li, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.3991-4010
    • /
    • 2021
  • The Question Similarity Measurement of Chinese Crop Diseases and Insect Pests (QSM-CCD&IP) aims to judge the user's tendency to ask questions regarding input problems. The measurement is the basis of the Agricultural Knowledge Question and Answering (Q & A) system, information retrieval, and other tasks. However, the corpus and measurement methods available in this field have some deficiencies. In addition, error propagation may occur when the word boundary features and local context information are ignored when the general method embeds sentences. Hence, these factors make the task challenging. To solve the above problems and tackle the Question Similarity Measurement task in this work, a corpus on Chinese crop diseases and insect pests(CCDIP), which contains 13 categories, was established. Then, taking the CCDIP as the research object, this study proposes a Chinese agricultural text similarity matching model, namely, the AgrCQS. This model is based on mixed information extraction. Specifically, the hybrid embedding layer can enrich character information and improve the recognition ability of the model on the word boundary. The multi-scale local information can be extracted by multi-core convolutional neural network based on multi-weight (MM-CNN). The self-attention mechanism can enhance the fusion ability of the model on global information. In this research, the performance of the AgrCQS on the CCDIP is verified, and three benchmark datasets, namely, AFQMC, LCQMC, and BQ, are used. The accuracy rates are 93.92%, 74.42%, 86.35%, and 83.05%, respectively, which are higher than that of baseline systems without using any external knowledge. Additionally, the proposed method module can be extracted separately and applied to other models, thus providing reference for related research.

Investigation of Tensile Behaviors in Open Hole and Bolt Joint Configurations of Carbon Fiber/Epoxy Composites

  • Dong-Wook Hwang;Sanjay Kumar;Dong-Hun Ha;Su-Min Jo;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.259-263
    • /
    • 2023
  • This study investigated the open hole tensile (OHT) properties of carbon fiber/epoxy composites and compared them to bolt joint tensile (BJT) properties. The net nominal modulus and strength (1376 MPa) were found to be higher than the gross nominal strength (1041 MPa), likely due to increasing hole size. The OHT and BJT specimens exhibited similar stiffness, as expected without bolt rotation causing secondary bending. OHT specimens experienced a sharp drop in stress indicating unstable crack propagation, delamination, and catastrophic failure. BJT specimens failed through shear out on the bolt side and bearing failure on the nut side, involving fiber kinking, matrix splitting, and delamination, resulting in lower strength compared to OHT specimens. The strength retention of carbon fiber/epoxy composites with open holes was 66%. Delamination initiation at the hole's edge caused a reduction in the stress concentration factor. Filling the hole with a bolt suppressed this relieving mechanism, leading to lower strength in BJT specimens compared to OHT specimens. Bolt joint efficiency was calculated as 15%. The reduction in strength in bolted joints was attributed to fiber-matrix splitting and delamination, aligning with Hart Smith's bolted joint efficiency diagram. These findings contribute to materials selection and structural reliability estimation for carbon fiber/epoxy composites. They highlight the behavior of open hole and bolt joint configurations under tensile loading, providing valuable insights for engineering applications.

Improvement in Sensitivity by Increasing the Frequency of SAW Sensors for DNA Detection (DNA 측정용 SAW 센서의 주파수 증대에 의한 감도향상)

  • Sakong, Jung-Yul;Kim, Jae-Ho;Lee, Soo-Suk;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.42-47
    • /
    • 2007
  • In this paper. we have studied improvement in sensitivity by increasing the frequency of SAW sensors for detecting the immobilization and hybridization of DNA. The sensor consists of twin SAW delay lines operating at 200MHz, a sensing channel and a reference channel. fabricated on $36^{\circ}$ rotated Y-cut X-propagation $LiTaO_3$ crystals. The optimum concentration of probe and target DNA was decided for the improvement of detection mechanism. and digital syringe pump system was used to reduce the human errors. The hybridization between immobilized probe DNA and target DNA on the gold-coated delay line results in mass loading on the delay line of the sensing channel. Thus, the relative frequency change was monitored in relation to the mass loading. The measurement results showed a good response of the sensor to the DNA hybridization with a maximum sensitivity level up to 0.066ng/m1/Hz.

Analysis of the thermal-mechanical behavior of SFR fuel pins during fast unprotected transient overpower accidents using the GERMINAL fuel performance code

  • Vincent Dupont;Victor Blanc;Thierry Beck;Marc Lainet;Pierre Sciora
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.973-979
    • /
    • 2024
  • In the framework of the Generation IV research and development project, in which the French Commission of Alternative and Atomic Energies (CEA) is involved, a main objective for the design of Sodium-cooled Fast Reactor (SFR) is to meet the safety goals for severe accidents. Among the severe ones, the Unprotected Transient OverPower (UTOP) accidents can lead very quickly to a global melting of the core. UTOP accidents can be considered either as slow during a Control Rod Withdrawal (CRW) or as fast. The paper focuses on fast UTOP accidents, which occur in a few milliseconds, and three different scenarios are considered: rupture of the core support plate, uncontrolled passage of a gas bubble inside the core and core mechanical distortion such as a core flowering/compaction during an earthquake. Several levels and rates of reactivity insertions are also considered and the thermal-mechanical behavior of an ASTRID fuel pin from the ASTRID CFV core is simulated with the GERMINAL code. Two types of fuel pins are simulated, inner and outer core pins, and three different burn-up are considered. Moreover, the feedback from the CABRI programs on these type of transients is used in order to evaluate the failure mechanism in terms of kinetics of energy injection and fuel melting. The CABRI experiments complete the analysis made with GERMINAL calculations and have shown that three dominant mechanisms can be considered as responsible for pin failure or onset of pin degradation during ULOF/UTOP accident: molten cavity pressure loading, fuel-cladding mechanical interaction (FCMI) and fuel break-up. The study is one of the first step in fast UTOP accidents modelling with GERMINAL and it has shown that the code can already succeed in modelling these type of scenarios up to the sodium boiling point. The modeling of the radial propagation of the melting front, validated by comparison with CABRI tests, is already very efficient.