• Title/Summary/Keyword: Propagation Channel Model

Search Result 165, Processing Time 0.025 seconds

Discrete-time approximation and modeling of a broadband underwater propagation channel based on eigenray analysis (고유 음선 분석에 기반한 광대역 수중음향 전달 채널의 이산시간 근사 및 모의 방법 연구)

  • Shin, Donghoon;Cho, Hyeon-Deok;Kwon, Taekik;Ahn, Jae-Kyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.3
    • /
    • pp.216-225
    • /
    • 2020
  • In this paper, broadband underwater propagation channel modeling based on eigenray analysis is discussed. Underwater channels are often formulated in frequency domain time-harmonic signals, which are impractical for simulating broadband signals in time domain. In this regard, time domain modeling of the underwater propagation channel is required for the simulation of broadband signals, for which the eigenray analysis based on ray tracing, resulting in multipath propagation delays in time-domain, is used in this paper. For discrete time system application, the phase, frequency-dependent loss and non-integer sample delays for each eigenray, are approximated by the finite impulse response of the broadband propagation channel.

A Statistical Model for the Ultra-Wide Bandwidth Indoor Apartment Channel (실내 아파트 환경에서의 통계적 UWB 채널 모델)

  • Park Jin-Hwan;Lee Sang-Hyup;Bang Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.9 s.339
    • /
    • pp.19-28
    • /
    • 2005
  • We establish a statistical model for the ultra-wide bandwidth (UMB) indoor channel based on over 2000 frequency response measurements campaign in a Practical apartment. The approach is based on the investigation of the statistical properties of the multipath profiles measured in different place with different rooms. Based on the experimental results, a characterization of the propagation channel from theoretic view point is described. Also we describe a method for measurement of the channel impulse response and channel transfer function. Using the measured data, the authors compares channel impulse responses obtained from time-domain and channel transfer functions obtained from frequency-domain with statistical path loss model. The bandwidth of the signal used in this experiment is from 10MHz to 8.01 GHz. The time-domain results such as maximum excess delay, men excess delay and ms delay spread are presented. As well as, omni-directional biconical antenna were used for transmitter and receiver In addition, measurements presented here support m channel model including the antenna characteristics.

Measurement and analysis of indoor corridor propagation path loss in 5G frequency band (5G 주파수 대역에서의 실내 복도 전파 경로손실 측정 및 분석)

  • Kim, Hyeong Jung;Choi, Dong-You
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.688-693
    • /
    • 2022
  • In this paper, channel propagation path loss was measured in building corridors for frequency bands of 3.7 GHz and 28 GHz, which are used in 5G mobile communication, and compared and analyzed with CI (Close-In) and FI (Floating-Intercept) channel models. To measure the propagation path loss, the measurement was performed while moving the receiver (Rx) from the transmitter (Tx) by 10 m. As a result of the measurement, the PLE (Path Loss Exponent) values of the CI model at 3.7 GHz and 28 GHz were 1.5293 and 1.7795, respectively, and the standard deviations were analyzed as 9.1606 and 8.5803, respectively. In the FI model, 𝛼 values were 79.5269 and 70.2012, 𝛽 values were -0.6082 and 1.2517, respectively, and the standard deviations were 5.8113 and 4.4810, respectively. In the analysis results through the CI model and the FI model, the standard deviation of the FI model is smaller than that of the CI model, so it can be seen that the FI model is similar to the actual measurement result.

Study of the Propagation Model considering Refractive Channel Environment between Korea and Japan (한일간 대기굴절 채널환경을 고려한 전파모델 연구)

  • Lee, Kyung-Ryang;Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.49-54
    • /
    • 2013
  • Japan and South Korea since 2004 until now for the broadcast channel interference, by measuring the ongoing conflict are expected to prepare for the future, but Korea's preparation are not enough. In this study, it is pointed that cause of the interference through channel environmental analysis, and effective application of propagation prediction model was carried out between neighboring countries. Between Korea and Japan, radio duct occurs on hold due to changes in the refractive gradient, and comfirmed occurrence of broadcasts interference. The results are presented that 1% time variable, -91.80 [N-units/km], 10% time variable, -43.92 [N-units/km], 50% time variable, -586.19 [N-units/km], for effective refractive gradient. Proposed refractive gradient could contribute to actual radio propagation prediction.

Propagation Measurements and Estimation of Channel Propagation Models in Urban Environment

  • Zakaria, Yahia;Ivanek, Lubomir;Glesk, Ivan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2453-2467
    • /
    • 2017
  • Wireless communication is a telecommunication technology, which enables wireless transmission between the portable devices to provide wireless access in all types of environments. In this research, the measurements and various empirical models are analysed and compared in order to find out a suitable propagation model to provide guidelines for cell planning of wireless communication systems. The measured data was taken in urban region with low vegetation and some trees at 900 MHz frequency band. Path loss models are useful planning tools, which permit the designers of cellular communication to obtain optimal levels for the base station deployment and meeting the expected service level requirements. Outcomes show that these empirical models tend to overestimate the propagation loss. As one of the key outputs, it was observed that the calculations of Weissberger model fit with the measured data in urban environment.

The gate delay time and the design of VCO using variable MOS capacitance

  • Ryeo, Ji-Hwan
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.99-102
    • /
    • 2005
  • In the paper, a proposed VCO based on bondwire inductances and nMOS varactors was implemented in a standard $0.25\;{\mu}m$ CMOS process. Using the new drain current model and a propagation delay time model equations, the operation speed of CMOS gate will predict the dependence on the load capacitance and the depth of oxide, threshold voltage, the supply voltage, the channel length. This paper describes the result of simulation which calculated a gate propagation delay time by using new drain current model and a propagation delay time model. At the result, When the reverse bias voltage on the substrate changes from 0 voltage to 3 voltage, the propagation delay time is appeared the delay from 0.8 nsec to 1 nsec. When the reverse voltage is biased on the substrate, for reducing the speed delay time, a supply voltage has to reduce. The $g_m$ value of MOSFET is calculated by using new drain current model.

  • PDF

An Accurate Radio Channel Model for Wireless Sensor Networks Simulation

  • Alejandro Martfnez-Sala;Jose-Maria Molina-Garcia-Pardo;Esteban Egea-Lopez;Javier Vales-Alonso;Leandro Juan-Llacer;Joan Garcia-Haro
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.401-407
    • /
    • 2005
  • Simulations are currently an essential tool to develop and test wireless sensor networks (WSNs) protocols and to analyze future WSNs applications performance. Researchers often simulate their proposals rather than deploying high-cost test-beds or develop complex mathematical analysis. However, simulation results rely on physical layer assumptions, which are not usually accurate enough to capture the real behavior of a WSN. Such an issue can lead to mistaken or questionable results. Besides, most of the envisioned applications for WSNs consider the nodes to be at the ground level. However, there is a lack of radio propagation characterization and validation by measurements with nodes at ground level for actual sensor hardware. In this paper, we propose to use a low-computational cost, two slope, log-normal path­loss near ground outdoor channel model at 868 MHz in WSN simulations. The model is validated by extensive real hardware measurements obtained in different scenarios. In addition, accurate model parameters are provided. This model is compared with the well-known one slope path-loss model. We demonstrate that the two slope log-normal model provides more accurate WSN simulations at almost the same computational cost as the single slope one. It is also shown that the radio propagation characterization heavily depends on the adjusted model parameters for a target deployment scenario: The model parameters have a considerable impact on the average number of neighbors and on the network connectivity.

Performance Comparison of Image Transmission in Underwater Acoustic Environment (수중 음향 환경에서의 영상 전송 성능 비교분석)

  • Lee, Seung-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.19-29
    • /
    • 2008
  • Underwater acoustic(UWA) communication is one of the most difficult field in terms of severe channel environments such as multipath propagation, high temporal and spatial variability of channel conditions. Therefore, it is important to model and analyze the characteristics of underwater acoustic channel such as multipath propagation, transmission loss, reverberation, and ambient noise. In this paper, UWA communication channel is modeled with a ray tracing method and applied to image transmission. Quadrature phase shift keying(QPSK) and multichannel decision feedback equalizer(DFE) are utilized as phase-coherent modulation method and equalization technique, respectively. The objective is to improve the performance of the image transmission using vertical sensor array instead of single sensor in the viewpoint of bit error rate(BER), constellation diagram, and received image quality.

A Study on the Terrestrial DTV Channel Model (지상파 DTV 채널 모델에 관한 연구)

  • Lee, Seung-Youn;Na, Chae-Dong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.57-65
    • /
    • 2010
  • In this paper we proposed channel models for terrestrial ATSC (Advanced Television Systems Committee) DTV (Digital Television) system in South Korea. For the purpose of this model, we research on propagation model involved in terrestrial DTV system and analyze out field test data of terrestrial DTV broadcasting carried out in korean Broadcasting System. Using the measured values of received field strength, newly proposed Path-loss models have more correctly than that of conventional Path-loss models. This models can be utilized usefully for the efficient ATSC DTV system implementation requiring accurate link-budget calculation

Treatment of the Bed Slope Source Term for 2-Dimensional Numerical Model Using Quasi-steady Wave Propagation Algorithm (Quasi-steady Wave Propagation 알고리듬을 이용한 2차원 수치모형의 하상경사항 처리)

  • Kim, Tae-Hyung;Han, Kun-Yeun;Kim, Byung-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.2
    • /
    • pp.145-156
    • /
    • 2011
  • Two dimensional numerical model of high-order accuracy is developed to analyze complex flow including transition flow, discontinuous flow, and wave propagation to dry bed emerging at natural river flow. The bed slope term of two dimensional shallow water equation consisting of integral conservation law is treated efficiently by applying quasi-steady wave propagation scheme. In order to apply Finite Volume Method using Fractional Step Method, MUSCL scheme is applied based on HLL Riemann solver, which is second-order accurate in time and space. The TVD method is applied to prevent numerical oscillations in the second-order accurate scheme. The developed model is verified by comparing observed data of two dimenstional levee breach experiment and dam breach experiment containing structure at lower section of channel. Also effect of the source term is verified by applying to dam breach experiment considering the adverse slope channel.