• Title/Summary/Keyword: Pronunciation networks

Search Result 4, Processing Time 0.015 seconds

Pronunciation Network Construction of Speech Recognizer for Mispronunciation Detection of Foreign Language (한국인의 외국어 발화오류 검출을 위한 음성인식기의 발음 네트워크 구성)

  • Lee Sang-Pil;Kwon Chul-Hong
    • MALSORI
    • /
    • no.49
    • /
    • pp.123-134
    • /
    • 2004
  • An automatic pronunciation correction system provides learners with correction guidelines for each mispronunciation. In this paper we propose an HMM based speech recognizer which automatically classifies pronunciation errors when Koreans speak Japanese. We also propose two pronunciation networks for automatic detection of mispronunciation. In this paper, we evaluated performances of the networks by computing the correlation between the human ratings and the machine scores obtained from the speech recognizer.

  • PDF

Pronunciation Dictionary for English Pronunciation Tutoring System (영어 발음교정시스템을 위한 발음사전 구축)

  • Kim Hyosook;Kim Sunju
    • Proceedings of the KSPS conference
    • /
    • 2003.05a
    • /
    • pp.168-171
    • /
    • 2003
  • This study is about modeling pronunciation dictionary necessary for PLU(phoneme like unit) level word recognition. The recognition of nonnative speakers' pronunciation enables an automatic diagnosis and an error detection which are the core of English pronunciation tutoring system. The above system needs two pronunciation dictionaries. One is for representing standard English pronunciation. The other is for representing Korean speakers' English Pronunciation. Both dictionaries are integrated to generate pronunciation networks for variants.

  • PDF

Comparison Research of Non-Target Sentence Rejection on Phoneme-Based Recognition Networks (음소기반 인식 네트워크에서의 비인식 대상 문장 거부 기능의 비교 연구)

  • Kim, Hyung-Tai;Ha, Jin-Young
    • MALSORI
    • /
    • no.59
    • /
    • pp.27-51
    • /
    • 2006
  • For speech recognition systems, rejection function as well as decoding function is necessary to improve the reliability. There have been many research efforts on out-of-vocabulary word rejection, however, little attention has been paid on non-target sentence rejection. Recently pronunciation approaches using speech recognition increase the need for non-target sentence rejection to provide more accurate and robust results. In this paper, we proposed filler model method and word/phoneme detection ratio method to implement non-target sentence rejection system. We made performance evaluation of filler model along to word-level, phoneme-level, and sentence-level filler models respectively. We also perform the similar experiment using word-level and phoneme-level word/phoneme detection ratio method. For the performance evaluation, the minimized average of FAR and FRR is used for comparing the effectiveness of each method along with the number of words of given sentences. From the experimental results, we got to know that word-level method outperforms the other methods, and word-level filler mode shows slightly better results than that of word detection ratio method.

  • PDF

Realtime Word Filtering System against Variations of Censored Words in Korean (변형된 한글 금칙어에 대한 실시간 필터링 시스템)

  • Kim, ChanWoo;Sung, Mee Young
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.6
    • /
    • pp.695-705
    • /
    • 2019
  • The level of psychological damage caused by verbal abuse among cyberbully victims is very serious. It is going to introduce a system that determines the level of sanctions against chatting in real time using the automatic prohibited words filtering based on artificial neural network. In this paper, we propose a keyword filtering method that detects the modified prohibited words and determines whether the corresponding chat should be sanctioned in real time, and a real-time chatting screening system using it. The accuracy of filtering through machine learning was improved by processing data in advance through coding techniques that express consonants and vowels of similar pronunciation at close distances. After comparing and analyzing Mahalanobis-based clustering algorithms and artificial neural network-based algorithms, algorithms that utilize artificial neural networks showed high performance. If it is applied to Internet chatting, comments or online games, it is expected that it will be able to filter more effectively than the existing filtering method and that this will ease communication inconvenience due to existing indiscriminate filtering methods.