• 제목/요약/키워드: Prone- bridge

검색결과 55건 처리시간 0.026초

Evaluation of typhoon induced fatigue damage using health monitoring data for the Tsing Ma Bridge

  • Chan, Tommy H.T.;Li, Z.X.;Ko, J.M.
    • Structural Engineering and Mechanics
    • /
    • 제17권5호
    • /
    • pp.655-670
    • /
    • 2004
  • This paper aims to evaluate the effect of typhoons on fatigue damage accumulation in steel decks of long-span suspension bridges. The strain-time histories at critical locations of deck sections of long-span bridges during different typhoons passing the bridge area are investigated by using on-line strain data acquired from the structural health monitoring system installed on the bridge. The fatigue damage models based on Miner's Law and Continuum Damage Mechanics (CDM) are applied to calculate the increment of fatigue damage due to the action of a typhoon. Accumulated fatigue damage during the typhoon is also calculated and compared between Miner's Law and the CDM method. It is found that for the Tsing Ma Bridge case, the stress spectrum generated by a typhoon is significantly different than that generated by normal traffic and its histogram shapes can be described approximately as a Rayleigh distribution. The influence of typhoon loading on accumulative fatigue damage is more significant than that due to normal traffic loading. The increment of fatigue damage generated by hourly stress spectrum for the maximum typhoon loading may be much greater than those for normal traffic loading. It is, therefore, concluded that it is necessary to evaluate typhoon induced fatigue damage for the purpose of accurately evaluating accumulative fatigue damage for long-span bridges located within typhoon prone regions.

Evaluation of torsional response of a long-span suspension bridge under railway traffic and typhoons based on SHM data

  • Xia, Yun-Xia;Ni, Yi-Qing;Zhang, Chi
    • Structural Monitoring and Maintenance
    • /
    • 제1권4호
    • /
    • pp.371-392
    • /
    • 2014
  • Long-span cable-supported bridges are flexible structures vulnerable to unsymmetric loadings such as railway traffic and strong wind. The torsional dynamic response of long-span cable-supported bridges under running trains and/or strong winds may deform the railway track laid on the bridge deck and affect the running safety of trains and the comfort of passengers, and even lead the bridge to collapse. Therefore, it is eager to figure out the torsional dynamic response of long-span cable-supported bridges under running trains and/or strong winds. The Tsing Ma Bridge (TMB) in Hong Kong is a suspension bridge with a main span of 1,377 m, and is currently the world's longest suspension bridge carrying both road and rail traffic. Moreover, this bridge is located in one of the most active typhoon-prone regions in the world. A wind and structural health monitoring system (WASHMS) was installed on the TMB in 1997, and after 17 years of successful operation it is still working well as desired. Making use of one-year monitoring data acquired by the WASHMS, the torsional dynamic responses of the bridge deck under rail traffic and strong winds are analyzed. The monitoring results demonstrate that the differences of vertical displacement at the opposite edges and the corresponding rotations of the bridge deck are less than 60 mm and $0.1^{\circ}$ respectively under weak winds, and less than 300 mm and $0.6^{\circ}$ respectively under typhoons, implying that the torsional dynamic response of the bridge deck under rail traffic and wind loading is not significant due to the rational design.

Reynolds number effects on twin box girder long span bridge aerodynamics

  • Kargarmoakhar, Ramtin;Chowdhury, Arindam G.;Irwin, Peter A.
    • Wind and Structures
    • /
    • 제20권2호
    • /
    • pp.327-347
    • /
    • 2015
  • This paper investigates the effects of Reynolds number (Re) on the aerodynamic characteristics of a twin-deck bridge. A 1:36 scale sectional model of a twin girder bridge was tested using the Wall of Wind (WOW) open jet wind tunnel facility at Florida International University (FIU). Static tests were performed on the model, instrumented with pressure taps and load cells, at high wind speeds with Re ranging from $1.3{\times}10^6$ to $6.1{\times}10^6$ based on the section width. Results show that the section was almost insensitive to Re when pitched to negative angles of attack. However, mean and fluctuating pressure distributions changed noticeably for zero and positive wind angles of attack while testing at different Re regimes. The pressure results suggested that with the Re increase, a larger separation bubble formed on the bottom surface of the upstream girder accompanied with a narrower wake region. As a result, drag coefficient decreased mildly and negative lift coefficient increased. Flow modification due to the Re increase also helped in distributing forces more equally between the two girders. The bare deck section was found to be prone to vortex shedding with limited dependence on the Re. Based on the observations, vortex mitigation devices attached to the bottom surface were effective in inhibiting vortex shedding, particularly at lower Re regime.

Buffeting-induced stresses in a long suspension bridge: structural health monitoring oriented stress analysis

  • Liu, T.T.;Xu, Y.L.;Zhang, W.S.;Wong, K.Y.;Zhou, H.J.;Chan, K.W.Y.
    • Wind and Structures
    • /
    • 제12권6호
    • /
    • pp.479-504
    • /
    • 2009
  • Structural health monitoring (SHM) systems have been recently embraced in long span cable-supported bridges, in which buffeting-induced stress monitoring is one of the tasks to ensure the safety of the bridge under strong winds. In line with this task, this paper presents a SHM-oriented finite element model (FEM) for the Tsing Ma suspension bridge in Hong Kong so that stresses/strains in important bridge components can be directly computed and compared with measured ones. A numerical procedure for buffeting induced stress analysis of the bridge based on the established FEM is then presented. Significant improvements of the present procedure are that the effects of the spatial distribution of both buffeting forces and self-excited forces on the bridge deck structure are taken into account and the local structural behaviour linked to strain/stress, which is prone to cause local damage, are estimated directly. The field measurement data including wind, acceleration and stress recorded by the wind and structural health monitoring system (WASHMS) installed on the bridge during Typhoon York are analyzed and compared with the numerical results. The results show that the proposed procedure has advantages over the typical equivalent beam finite element models.

3개의 서로 다른 엉덩관절 벌림 각도에 따른 교각 운동 중 큰볼기근, 뒤넙다리근, 뭇갈래근의 근활성도 비교 (Comparison of Gluteus Maximus, Hamstring and Multifidus Muscle Activities During Bridge Exercises According to Three Different Hip Abduction Angles)

  • 최지석;장태진;전인철
    • 한국전문물리치료학회지
    • /
    • 제29권1호
    • /
    • pp.11-18
    • /
    • 2022
  • Background: Muscle activities of gluteus maximus (GM) and hamstring (HAM) have important roles in the stability and mobility of the hip joint during various functional activities including bridge and prone hip extension exercises. Objects: The purpose of this study is to investigate muscle activities of GM, multifidus (MF) and HAM during three different bridge exercises in healthy individuals. Methods: Twenty healthy subjects were participated. Electromyography device was used to measure muscle activities of GM, MF and HAM. Each subject was asked to perform three different bridge exercises with hip abduction (0°, 15°, 30°) in random order. One-way repeated measures analysis of the variance and a Bonferroni post hoc test were used. Statistical significance was set at α = 0.01. Results: The muscle activity of GM was significantly different among three conditions (hip abduction 0°, 15°, 30°) (adjusted p-value [Padj] < 0.01). The muscle activity of GM was significantly greater during bridge exercise with hip abduction 30° compared to 0° and 15° (Padj < 0.01). There was no significant difference in the muscle activity of MF and HAM muscle (Padj > 0.01). The ratio of muscle activity (ratio = GM/HAM) during bridge exercise with hip abduction 30° was significant greater compared to the hip abduction angles 0° and 15° (Padj < 0.01). Conclusion: Bridge exercise with hip abduction 30° can be recommended to selectively facilitate the muscle activity of GM and improve the ratio of muscle activity between GM and HAM.

Finite strip method in probabilistic fatigue analysis of steel bridges

  • Li, W.C.;Cheung, M.S.
    • Steel and Composite Structures
    • /
    • 제2권6호
    • /
    • pp.429-440
    • /
    • 2002
  • A finite strip method is developed for fatigue reliability analysis of steel highway bridges. Flat shell strips are employed to model concrete slab and steel girders, while a connection strip is formed using penalty function method to take into account eccentricity of girder top flange. At each sampling point with given slab thickness and modulus ratio, a finite strip analysis of the bridge under fatigue truck is performed to calculate stress ranges at fatigue-prone detail, and fatigue failure probability is evaluated following the AASHTO approach or the LEFM approach. After the failure probability is integrated over all sampling points, fatigue reliability of the bridge is determined.

구조 강성에 따른 교량 구조물의 임계 플러터 속도 연구 (Study of Critical Flutter Velocities of Bridge Girder Sections with Different Structural Stiffness)

  • 박성종;권혁준;김종윤;한재흥;이인
    • 한국전산구조공학회논문집
    • /
    • 제17권3호
    • /
    • pp.271-278
    • /
    • 2004
  • 본 논문에서는 토목 구조물에 대한 바람의 영향을 알아보기 위하여 수치 기법으로 해석하였다. 지간이 긴 현수교는 바람에 의한 공력탄성학적 분안정성에 놓일 수 있으므로, 설계 시 공기력은 주요한 고려사항이며 공탄성 안정성은 반드시 확인되어야 한다. 풍속이 임계 플러터 속도를 넘어서면, 교량 구조물은 바람과 상호작용에 의한 플러터 현상으로 인해 붕괴된다. 교량 단면의 공탄성 해석을 위해 전산유체역학과 전산구조해석을 이용하였으며, Navier-Stokes방정식을 사용하여 공기력을 구하였다. 본 연구에서는 구조 강성에 따른 교량 구조물의 임계 플러터 속도가 연구된다. 교량 단면의 임계 플러터 속도는 구조강성의 변화에 민감함을 확인할 수 있었다.

The development of the seismic fragility curves of existing bridges in Indonesia (Case study: DKI Jakarta)

  • Veby Citra Simanjuntak;Iswandi Imran;Muslinang Moestopo;Herlien D. Setio
    • Structural Monitoring and Maintenance
    • /
    • 제10권1호
    • /
    • pp.87-105
    • /
    • 2023
  • Seismic regulations have been updated from time to time to accommodate an increase in seismic hazards. Comparison of seismic fragility of the existing bridges in Indonesia from different historical periods since the era before 1990 will be the basis for seismic assessment of the bridge stock in Indonesia, most of which are located in earthquake-prone areas, especially those built many years ago with outdated regulations. In this study, seismic fragility curves were developed using incremental non-linear time history analysis and more holistically according to the actual strength of concrete and steel material in Indonesia to determine the uncertainty factor of structural capacity, βc. From the research that has been carried out, based on the current seismic load in SNI 2833:2016/Seismic Map 2017 (7% probability of exceedance in 75 years), the performance level of the bridge in the era before SNI 2833:2016 was Operational-Life Safety whereas the performance level of the bridge designed with SNI 2833:2016 was Elastic - Operational. The potential for more severe damage occurs in greater earthquake intensity. Collapse condition occurs at As = FPGA x PGA value of bridge Era I = 0.93 g; Era II = 1.03 g; Era III = 1.22 g; Era IV = 1.54 g. Furthermore, the fragility analysis was also developed with geometric variations in the same bridge class to see the effect of these variations on the fragility, which is the basis for making bridge risk maps in Indonesia.

절리 암반 사면의 계단 경로 파괴에 미치는 불연속면 간격/길이 비의 영향 (The Effect of the Discontinuity Spacing/Length Ratio on Step-Path Failure of Jointed Rock Slopes)

  • 윤운상
    • 지질공학
    • /
    • 제34권2호
    • /
    • pp.317-327
    • /
    • 2024
  • 대규모 암반 사면에서 비연속성의 절리계가 발달할 때, 계단상 활동면에 의한 사면 파괴가 발생할 수 있다. 계단상 활동면은 절리-절리 활동면 또는 절리-암교 활동면으로 구분할 수 있으며, 절리-암교 활동면에서 암교는 절리와 평행한 전단 저항과 절리에 수직인 인장 저항을 제공한다. 계단 경로 파괴는 활동 암괴의 하중에 의해 암교의 파괴가 발생하여 암교 양단의 두 절리가 연결되며 발생한다. 암교의 길이가 동일하다면 암석의 인장강도가 전단강도에 비해 낮으므로 절리에 수직으로 형성된 암교가 파괴에 취약하며, 불연속면 간격/길이의 비가 작을수록 계단 경로 파괴의 가능성이 커진다. 비연속성의 절리가 발달하는 암반 사면의 계단상 활동 파괴 위험에 대한 평가를 위해서는 체계적인 불연속면 조사 및 분석을 통해 계단 경로 파괴면을 구성하여 한계 평형 해석 또는 수치 해석 등의 안정성 평가를 수행하여야 한다.

Seismic fragility performance of skewed and curved bridges in low-to-moderate seismic region

  • Chen, Luke;Chen, Suren
    • Earthquakes and Structures
    • /
    • 제10권4호
    • /
    • pp.789-810
    • /
    • 2016
  • Reinforced concrete (RC) bridges with both skew and curvature are pretty common in areas with complex terrains. Existing studies have shown skewed and/or curved bridges exhibit more complicated seismic performance than straight bridges, and yet related seismic risk studies are still rare. These bridges deserve more studies in low-to-moderate seismic regions than those in seismic-prone areas. This is because for bridges with irregular and complex geometric designs, comprehensive seismic analysis is not always required and little knowledge about actual seismic risks for these bridges in low-to-moderate regions is available. To provide more insightful understanding of the seismic risks and the impact from the geometric configurations, analytical fragility studies are carried out on four typical bridge designs with different geometric configurations (i.e., straight, curved, skewed, skewed and curved) in the mountain west region of the United States. The results show the curved and skewed geometries can considerably affect the bridge seismic fragility in a complex manner, underscoring the importance of conducting detailed seismic risk assessment of skewed and curved bridges in low-to-moderate seismic regions.