• Title/Summary/Keyword: Promoter analysis

Search Result 843, Processing Time 0.03 seconds

The Chloroplast rpl23 Gene Cluster of Spirogyra maxima (Charophyceae) Shares Many Similarities with the Angiosperm rpl23 Operon

  • Lee, Jung-Ho;James R. Manhart
    • ALGAE
    • /
    • v.17 no.1
    • /
    • pp.59-68
    • /
    • 2002
  • A phylogenetic affinity between charophytes and embryophytes (land plants) has been explained by a few chloroplast genomic characters including gene and intron (Manhart and Palmer 1990; Baldauf et al. 1990; Lew and Manhart 1993). Here we show that a charophyte, Spirogyra maxima, has the largest operon of angiosperm chloroplast genomes, rpl23 operon (trnⅠ-rpl23-rpl2-rps19-rpl22-rps3-rpl16-rpl14-rps8-infA-rpl36-rps11-rpoA) containing both embryophyte introns, rpl16.i and rpl2.i. The rpl23 gene cluster of Spirogyra contains a distinct eubacterial promoter sequence upstream of rpl23, which is the first gene of the green algal rpl23 gene cluster. This sequence is completely absent in angiosperms but is present in non-flowering plants. The results imply that, in the rpl23 gene cluster, early charophytes had at least two promoters, one upstream of trnⅠ and and another upstream of rpl23, which partially or completely lost its function in land plants. A comparison of gene clusters of prokaryotes, algal chloroplast DNAs and land plant cpDNAs indicated a loss of numerous genes in chlorophyll a+b eukaryotes. A phylogenetic analysis using presence/absence of genes and introns as characters produced trees with a strongly supported clade containing chlorophyll a+b eukaryotes. Spirogyra and embryophytes formed a clade characterized by the loss of rpl5 and rps9 and the gain of trnⅠ (CAU) and introns in rpl2 and rpl16. The analyses support the hypothesis that the rpl23 gene cluster and the rpl2 and rpl16 introns of land plants originated from a common ancestor of Spirogyra and land plants.

Constructions of a Transfer Vector Containing the gX Signal Sequence of Pseudorabies Virus and a Recombinant Baculovirus

  • Lee, Hyung-Hoan;Kang, Hyun;Kim, Jung-Woo;Hong, Seung-Kuk;Kang, Bong-Joo;Song, Jae-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.541-547
    • /
    • 1999
  • Constructions of a transfer vector and a recombinant baculovirus using the thymidine kinase gene of the Herpes simplex virus type 1 strain F (HSV -1) were carried out. Newly cloned transfer vector, pHcgXIIIB, was constructed by insertion of the glycoprotein gX gene signal peptide sequence of Pseudorabies virus into the baculovirus vector pHcEV-IV. The gX sequence was inserted just downstream from the promoter for the polyhedrin gene of the Hyphantria cunea nuclear polyhedrosis virus (HcNPV). HSV-1 thymidine kinase(tk) gene (1.131 kb) was used as a candidate gene for transferring into the baculovirus expression system. The tk gene was inserted into a BamHI site downstream from the gX sequence-promoter for the polyhedrin gene in the pHcgXIIIB transfer vector and was transferred into the infectious lacZ-HcNPV expression vector. Recombinant virus was isolated and was named gX-TK-HcNPV. The recombinant virus produced a 45 kDa gX-TK fusion protein in Spodoptera frugiperda cells, which was confirmed by Western blot analysis. Microscopic examination of gX-TK-HcNPV-infected cells revealed normal multiplication. Fluorescent antibody staining indicated that the gX-TK fusion protein was present in the cytoplasm. These results indicated that the transfer vector successfully transferred the gX-tk gene into the baculovirus expression system.

  • PDF

Analysis of Secretion Behavior of Human Lysozyme from Recombinant Saccharomyces cerevisiae

  • MARTEN, MARK R.;NAM SOO HAN;JIN BYUNG PARK;JIN-HO SEO
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.576-581
    • /
    • 1999
  • Effects of signal sequences, protein sizes and dissolved oxygen on the secretion of human lysozyme from a recombinant yeast were experimentally characterized. The systems consisted of Saccharomyces cerevisiae host SEY2102 that was transformed with two different plasmids. These plasmids were identical with an exception to the plasmid pMC614, which contained the native yeast MFα1 sequence and the plasmid pMC632 with the non-native rat α-amylase signal sequence. The expression of human lysozyme was controlled by the ADHI promoter. The native yeast MFαl signal sequence was more efficient than the non-native rat α-amylase signal sequence in directing the secretion of human lysozyme. Lysozyme secreted with the α-amylase signal was retained inside the cells and released to the medium very slowly, thereby causing a lower cell growth rate and a decreased product secretion rate. Lysozyme was secreted more efficiently than invertase, which is an order of magnitude bigger in molecular size compared to lysozyme, which was under the direction of the MFαl signal sequence, suggesting that protein sizes may affect the secretion efficiency. When expressed in anaerobic conditions in the medium where the ADHI promoter was derepressed, the amount of lysozyme secreted was about twice higher than that of the aerobic culture. However, the secretion rates were identical. This result showed that the dissolved oxygen level may affect the efficiency of protein secretion only, and not the secretion rate of the product protein.

  • PDF

High-yield Production of Functional Human Lactoferrin in Transgenic Cell Cultures of Siberian Ginseng(Acanthopanax senticosus)

  • Jo, Seung-Hyun;Kwon, Suk-Yoon;Park, Doo-Sang;Yang, Kyoung-Sil;Kim, Jae-Whune;Lee, Ki-Teak;Kwak, Sang-Soo;Lee, Haeng-Soon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.442-448
    • /
    • 2006
  • Human lactoferrin (hLf) is an iron-binding glycoprotein that has been considered to play many biological roles in the human, including the stimulation of the immune system, antimicrobial and anti-inflammatory effects, and regulation of iron absorption. We generated transgenic Siberian ginseng (Acanthopanax senticosus) cell cultures producing a functional hLf protein using the signal peptide sequence from the endoplasmic reticulum and driven by an oxidative stress-inducible SWPA2 promoter which is highly expressed in plant cell cultures. The production of hLf increased proportionally to cell growth and showed a maximal level (up to 3.6% of total soluble protein) at the stationary phase in suspension cultures. Full-length hLf protein was identified by immunoblot analysis in transgenic cell cultures of Siberian ginseng. Recombinant hLf (rhLf) was purified from suspension cells of Siberian ginseng by ammonium sulfate precipitation, cation-exchange and gel filtration chromatography. N-terminal sequences of rhLf were identical to native hLf (nhLf). The overall monosaccharide composition of rhLf showed the presence of plant specific xylose while sialic acid is absent. Antibacterial activity of purified rhLf was higher than that of nhLf. Taken together, we anticipate that medicinal Siberian ginseng cultured cells, as demonstrated by this study, will be a biotechnologically useful source for commercial production of functional hLf not requiring further purification.

Identification of Egr1 Direct Target Genes in the Uterus by In Silico Analyses with Expression Profiles from mRNA Microarray Data

  • Seo, Bong-Jong;Son, Ji Won;Kim, Hye-Ryun;Hong, Seok-Ho;Song, Haengseok
    • Development and Reproduction
    • /
    • v.18 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • Early growth response 1 (Egr1) is a zinc-finger transcription factor to direct second-wave gene expression leading to cell growth, differentiation and/or apoptosis. While it is well-known that Egr1 controls transcription of an array of targets in various cell types, downstream target gene(s) whose transcription is regulated by Egr1 in the uterus has not been identified yet. Thus, we have tried to identify a list of potential target genes of Egr1 in the uterus by performing multi-step in silico promoter analyses. Analyses of mRNA microarray data provided a cohort of genes (102 genes) which were differentially expressed (DEGs) in the uterus between Egr1(+/+) and Egr1(-/-) mice. In mice, the frequency of putative EGR1 binding sites (EBS) in the promoter of DEGs is significantly higher than that of randomly selected non-DEGs, although it is not correlated with expression levels of DEGs. Furthermore, EBS are considerably enriched within -500 bp of DEG's promoters. Comparative analyses for EBS of DEGs with the promoters of other species provided power to distinguish DEGs with higher probability as EGR1 direct target genes. Eleven EBS in the promoters of 9 genes among analyzed DEGs are conserved between various species including human. In conclusion, this study provides evidence that analyses of mRNA expression profiles followed by two-step in silico analyses could provide a list of putative Egr1 direct target genes in the uterus where any known direct target genes are yet reported for further functional studies.

Dietary addition of a standardized extract of turmeric (TurmaFEEDTM) improves growth performance and carcass quality of broilers

  • Johannah, NM;Ashil, Joseph;Balu, Maliakel;Krishnakumar, IM
    • Journal of Animal Science and Technology
    • /
    • v.60 no.5
    • /
    • pp.8.1-8.9
    • /
    • 2018
  • Background: Indiscriminate use of antibiotics in livestock and poultry farming has caused emergence of new pathogenic strains. The situation has warrented the development of safe and alternative growth promoters and immunity enhancers in livestock. Herbal additives in animal and bird feed is a centuries-old practice. Thus, the present study investigated the efficacy of a standardized formulation of lipophilic turmeric extract containing curcumin and turmerones, (TF-36), as a natural growth promoter poultry feed additive. Methods: The study was designed on 180 one-day old chicks, assigned into three groups. Control group ($T_0$) kept on basal diet and supplemented groups $T_{0.5}$ and $T_1$ fed with 0.5% and 1% TF-36 fortified basal diet for 42 days. Each dietary group consisted of six replicates of ten birds. Body weight, food intake, food conversion ratio, skin colour, blood biochemical analysis and antioxidant status of serum were investigated. Results: Body weight improved significantly in $T_1$ with a 10% decrease in FCR as compared to the control. TF-36 supplementation in $T_1$ enhanced the antioxidant enzyme activity significantly (p < 0.05) with a decrease (p < 0.05) in lipid peroxidation. It also caused a slight yellow skin pigmentation without any change in meat color, indicating the bioavailability of curcumin from TF-36. However, no significant change in the concentration of serum creatinine, total protein and liver enzyme activities were observed, indicating the safety. Conclusion: In summary, we concluded that TF-36 can be a natural feed additive to improve growth performance in poultry, probably due to the better antioxidant activity and antimicrobial effects contributed by the better bioavailability of curcuminoids and turmerones. Besides, curcuminoids and turmerones were also known to be gastroprotective and anti-inflammatory agents.

The Use of Glufosinate as a Selective Marker for the Transformation of Cucumber (Cucumis sativus L.) (오이의 형질전환을 위반 선발마커로서 Glufosinate의 이용)

  • Cho Mi-Ae;Song Yun-Mi;Park Yun-Ok;Ko Suck-Min;Min Sung-Ran;Liu Jang-Ryol;Choi Pil-Son
    • Journal of Plant Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.161-165
    • /
    • 2005
  • Agrobacterium tumefaciens-mediated cotyledonary explants transformation was used to produce transgenic cucumber. Cotyledonary explants of cucumber (c.v., Eunchim) were co-cultivated with strains Agrobaderium (LBA4404, GV3101, EHA101) containing the binary vector (pPTN289) carrying with CaMV 355 promoter-gus gene as reporter and NOS promoter-bar gene conferring resistance to glufosinate (herbicide Basta) as selectable marker. There was a significant difference in the transformation frequency depending Agrobacterium strains. The EHA101 of bacterial strains employed gave the maximum frequency (0.35%) for cucumber transformation. Histochemical gus and leaf painting assay showed that 15 individual lines were transgenic with the gus and bar gene. Southern blot analysis also revealed that the gus gene was successfully integrated into each genome of transgenic cucumber.

Sodium Butyrate Alters Cell-Cell Interactions through Up-Regulation of E-Cadherin in Human Hepatocellular Carcinoma Cells (Sodium butyrate에 의한 E-cadherin의 발현증가와 세포간 상호작용의 변화)

  • Kwun, Hyun-Jin;Jang, Kyung-Lib
    • Journal of Life Science
    • /
    • v.19 no.6
    • /
    • pp.705-710
    • /
    • 2009
  • Sodium butyrate (NaBt), a naturally occurring short chain fatty acid derived from carbohydrate metabolism in the gut, is known to exhibit strong anti-cancer potentials in various human cancer cells; however, its action mechanism is poorly understood. In the present study, we demonstrated that NaBt up-regulates levels of E-cadherin, a key cell adhesion molecule implicated as a tumor suppressor, in a cell type-specific manner. Although levels of p21, a potential activator for E-cadherin expression, were also up-regulated by treatment with NaBt in several types of cells, it does not seem to be associated with the activation of E-cadherin in the NaBt-treated cells. Instead, the data from promoter analysis suggest that NaBt up-regulates expression of E-cadherin at the transcription level by enhancing its promoter strength via a CCAAT-box. The elevated E-cadherin in the presence of NaBt was primarily localized at the cell-cell contacts, converting Hep3B cells into a more differentiated form.

Arabidopsis ACC Oxidase 1 Coordinated by Multiple Signals Mediates Ethylene Biosynthesis and Is Involved in Root Development

  • Park, Chan Ho;Roh, Jeehee;Youn, Ji-Hyun;Son, Seung-Hyun;Park, Ji Hye;Kim, Soon Young;Kim, Tae-Wuk;Kim, Seong-Ki
    • Molecules and Cells
    • /
    • v.41 no.10
    • /
    • pp.923-932
    • /
    • 2018
  • Ethylene regulates numerous aspects of plant growth and development. Multiple external and internal factors coordinate ethylene production in plant tissues. Transcriptional and post-translational regulations of ACC synthases (ACSs), which are key enzymes mediating a rate-limiting step in ethylene biosynthesis have been well characterized. However, the regulation and physiological roles of ACC oxidases (ACOs) that catalyze the final step of ethylene biosynthesis are largely unknown in Arabidopsis. Here, we show that Arabidopsis ACO1 exhibits a tissue-specific expression pattern that is regulated by multiple signals, and plays roles in the lateral root development in Arabidopsis. Histochemical analysis of the ACO1 promoter indicated that ACO1 expression was largely modulated by light and plant hormones in a tissue-specific manner. We demonstrated that point mutations in two E-box motifs on the ACO1 promoter reduce the light-regulated expression patterns of ACO1. The aco1-1 mutant showed reduced ethylene production in root tips compared to wild-type. In addition, aco1-1 displayed altered lateral root formation. Our results suggest that Arabidopsis ACO1 integrates various signals into the ethylene biosynthesis that is required for ACO1's intrinsic roles in root physiology.

Urine Analysis in Transgenic Mice Expressing the Growth Hormone-releasing Factor (성장호르몬 방출인자를 발현하는 형질전환 생쥐에서 소변분석)

  • Cho, Byung-Nam;Jung, Hoi-Kyung;Yoon, Yong-Dal;Mayo, Kelly-E
    • Development and Reproduction
    • /
    • v.6 no.1
    • /
    • pp.31-35
    • /
    • 2002
  • The major urinary proteins(MUPs) of mice that bind hydrophobic molecules known as pheromones are regulated in part by the actions of growth hormone. The expression of the MUPs was therefore investigated in transgenic mice that express a human growth hormone-releasing factor gene from a metallothionein gene promoter(MT-GRF) and as a result have elevated growth hormone levels. MUPs were severely down-regulated in the urine of these animals compared to normal mice or to control transgenic mice expressing another gene(the inhibin a subunit) from the same metallothionein promoter(MT-Inh) and more MUPs disappeared in male mice than female ones. MUPs were also down-regulated in the urine of the UT-GRF-injected mice. In addition, it was observed that the urine of the MT-GRF mice included a high molecular weight protein that co-migrates with the major serum protein albumin, indicating an impairment in glomerular filtration within the kidney. The urinary loss of serum proteins was more severe in male MT-GRF mice than female ones. Thus the overexpression of human GRF mimics changes observed in MUP protein expression and glomerular function in other models of growth hormone hypersecretion with sex-dependent differential effects.

  • PDF