We provide a new solution for the projective reconstruction problem based on coupled line cameras (CLCs) and their geometric properties. The proposed solution is composed of a series of optimized steps, and each step is more efficient than those of the initial solution proposed in [1]. We also give a new determinant condition for rectangle determination, which leads to less ambiguity in implementation. The key steps of the proposed solution can be represented with more compact analytic equations due to the intuitive geometric interpretations of the projective reconstruction problem based on CLCs: the center of projection corresponds to the intersection point of the two solution circles of each line camera involved.
In this paper, we present an approach that is able to reconstruct 3 dimensional metric models from un-calibrated images acquired by a freely moved camera system. If nothing is known of the calibration of either camera, nor the arrangement of one camera which respect to the other, then the projective reconstruction will have projective distortion which expressed by an arbitrary projective transformation. The distortion on the reconstruction is removed from projection to metric through self-calibration. The self-calibration requires no information about the camera matrices, or information about the scene geometry. Self-calibration is the process of determining internal camera parameters directly from multiply un-calibrated images. Self-calibration avoids the onerous task of calibrating cameras which needs to use special calibration objects. The root of the method is setting a uniquely fixed conic(absolute quadric) in 3D space. And it can make possible to figure out some way from the images. Once absolute quadric is identified, the metric geometry can be computed. We compared reconstruction image from calibrated images with the result by self-calibration method.
비교정 영상 시퀀스(un-calibrated sequence)로부터 대상 장면을 재구성하는 연구는 컴퓨터 비젼에서 중요한 주제이다. 3차인 정보론 유클리드 공간에서 재구성하기 위해 프로젝티브(projective) 재구성이 선행되며, 이는 병합(merging)방법과 분해 (factorization)방법으로 나뉜다. 분해방법은 카메라 투영행렬과 3차원 구조정보를 한 번에 계산하기 때문에 계산속도가 빠르며, 병합방법의 단점인 오차의 누적 문제를 해결할 수 있다. 그러나 사용되는 일치점(correspondence)이 모든 영상 시퀀스에 존재한다는 가정으로 인해 긴 시퀀스에 적용하기 어렵다. 본 논문에서는 영상 시퀀스를 몇 개의 그룹으로 나누고 각 그룹을 분해 법으로 프로젝티브 재구성을 한 다음, 하나의 프로젝티브 공간으로 다시 구성하는 새로운 방법을 제안하였다. 시퀀스에서 그룹을 결정하기 위해 매칭점의 개수, 평면사영변환(homography) 오차, 영상 내 매칭점의 분포를 함께 고려했으며, 병합방법에 비해 카메라 파라미터의 오차 누적이 적고 계산속도면에서도 우수함을 실험을 통해 확인하였다.
This paper addresses the factorization method to estimate the projective structure of a scene from feature (points) correspondences over images with occlusions. We propose both a column and a row space approaches to estimate the depth parameter using the subspace constraints. The projective depth parameters are estimated by maximizing projection onto the subspace based either on the Joint Projection matrix (JPM) or on the the Joint Structure matrix (JSM). We perform the maximization over significant observation and employ Tardif's Camera Basis Constraints (CBC) method for the matrix factorization, thus the missing data problem can be overcome. The depth estimation and the matrix factorization alternate until convergence is reached. Result of Experiments on both real and synthetic image sequences has confirmed the effectiveness of our proposed method.
본 논문에서는 다중 영상에서 추출된 특징점을 사용해서 투영 공간에서의 카메라 행렬과 3차원 정점좌표를 계산하는 방법을 제안한다. 수치적인 안정성을 위해서 특징점을 정규화한 후 복원하며 얻어지는 카메라 행렬과 3차원 정점에 대해서 비정규화한다. 카메라 행렬과 3차원 정점의 초기값을 얻기 위해서 특이값 분해기법을 사용해서 투영 깊이가 적용된 측정 행렬을 분해한다. 행렬 분해 제약을 사용하여 카메라 행렬과 3차원 정점을 투영 복원한다. 투영 복원 과정에서는 비선형 반복적 최적화 방법이 사용된다. 실험 결과 제안방법은 대체로 적절한 정확성을 얻었고 오차의 편차가 크지 않았다.
본 연구에서는 여러 이미지를 이용하여 사실적인 3차원 장면의 모델을 얻는 방법이 구현되었다. 이미지는 파라메터를 모르는 카메라를 이용하여 여러 위치에서 획득한 것을 사용하였다. 먼저 특징점 추출 및 추적 방법을 사용하여 모든 이미지에 대한 대응점들을 구하고 이 점들을 사용하여 사영복원을 구한다. 그 다음 사영 복원된 값에 여러 제약조건을 사용하여 유클리디언 복원을 하면 특징점들의 3차원 좌표값이 계산된다. 이 좌표값을 이용하여 삼각형 메쉬를 구한 후 이 면에 텍스처 맵핑을 하면 사실적인 복원이 완성된다. 전체 시스템은 C++언어로 구현하였으며, 사용자 인터페이스는 Qt 라이브러리로, 텍스처 맵핑과 모델 가시화 부분은 OpenGL 그래픽스 라이브러리로 구현하였다. 구현된 시스템의 효용성을 보이기 위해 모의 데이터와 실제 이미지 데이터를 이용하여 실험한 결과를 포함하였으며 만족할 만한 복원 결과를 얻을 수 있었다.
The recovery of 3D scene structure from multiple views has been long one of the central problems in computer vision. This paper presents a new projective reconstruction method based on factorization for un-calibrated image sequences. The proposed algorithm provides an effective measure to construct frame groups by using various information between frames. The experimental results show that the proposed method can reconstruct a more precise 3D structure than the precious methods such as the merging method.
본 논문은 고정된 카메라를 수평 이동(panning)시켜 얻어진 영상으로부터 단순화된 변환식을 이용 실린더 파노라마 영상(cylindrical panorama)을 재구성하는 방법을 제안한다. 일반적인 영상간의 사영 변환식(projective transform)은 3차원 공간의 X, Y, Z축에 대한 카메라의 회전 성분을 모두 고려하지만, 실제 파노라마 영상을 구성하기 위해서는 Y축 중심의 카메라 회전만을 고려한다. 이러한 제약은 기존의 8자유도(degree of freedom)를 갖는 사영 변환식을 4자유도를 갖는 사영 변환식으로 단순화시키고, 그 결과 변환식을 유도하기 위해 필요한 대응점의 개수가 절반으로 줄어들어 전체적인 계산량을 크게 감소시킬 수 있다. 모의실험 결과 제안된 알고리즘은 기존의 알고리즘과 계산량을 감소시키면서 유사한 성능을 보이고 있고, 단순화된 사영 변환식을 이용한 영상을 구성하는 것을 보여주었다.
We review recent research results on coupled line cameras (CLC) as a new geometric tool to reconstruct a scene quadrilateral from image quadrilaterals. Coupled line cameras were first developed as a camera calibration tool based on geometric insight on the perspective projection of a scene rectangle to an image plane. Since CLC comprehensively describes the relevant projective structure in a single image with a set of simple algebraic equations, it is also useful as a geometric reconstruction tool, which is an important topic in 3D computer vision. In this paper we first introduce fundamentals of CLC with reals examples. Then, we cover the related works to optimize the initial solution, to extend for the general quadrilaterals, and to apply for cuboidal reconstruction.
We present a new algorithm for the calibration of a camera and the recovery of 3D scene structure up to a scale from image sequences using known angles between lines in the scene. Traditional method for calibration using scene constraints requires various scene constraints due to the stratified approach. Proposed method requires only one type of scene constraint of known angle and also it directly recovers metric structure up to an unknown scale from projective structure. Specifically, we recover the matrix that is the homography between the projective structure and the Euclidean structure using angles. Since this matrix is a unique one in the given set of image sequences, we can easily deal with the problem of varying intrinsic parameters of the camera. Experimental results on the synthetic and real images demonstrate the feasibility of the proposed algorithm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.