• Title/Summary/Keyword: Projection Image Matching

Search Result 59, Processing Time 0.021 seconds

VR Image Watermarking Method Considering Production Environments (제작 환경을 고려한 VR 영상의 워터마킹 방법)

  • Moon, Won-jun;Seo, Young-ho;Kim, Dong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.561-563
    • /
    • 2019
  • This paper proposes a watermarking method for copyright protection of images used in VR. The Embedding method is that finds the point through the SIFT feature points, inserts the watermark by using DWT and QIM on the surrounding area. The objective image to extract the embedded watermark is the projected image and its method finds the SIFT feature points and extracts watermark data from its surrounding areas after correction by using inverse process of matching and projection in the VR image production process. By comparing the NCC and BER between the extracted watermark and the inserted watermark, the watermark is determined by accumulating the watermark having a threshold value or more. This is confirmed by comparing with a conventional method.

  • PDF

A Research on the PIV Algorithm Using Image Coding (영상코드화 기법을 이용한 PIV 알고리듬에 대한 연구)

  • Kim, Sung-Kyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.153-160
    • /
    • 2000
  • A Particle Image Velocimetry(PIV) algorithm is developed to analyze whole flow field both qualitatively and quantitatively. The practical use of PIV requires the use of fast, reliable, computer-based methods for tracking numerous particles suspended in a flow field. The TSS, NTSS, FFT-Hybrid, which are developed in the area of image compression and coding, are introduced to develop fast vector search algorithm. The numerical solution of the lid-driven cavity flow by the ADI algorithm with the Wachspress Formula is introduced to produce synthetic data for the validation of the tracking algorithms. The algorithms are applied to image data of real flow experiments. The comparisons in CPU time and mean error show, with a small loss of accuracy, CPU time for tracking is reduced considerably.

Development and Application of High-resolution 3-D Volume PIV System by Cross-Correlation (해상도 3차원 상호상관 Volume PIV 시스템 개발 및 적용)

  • Kim Mi-Young;Choi Jang-Woon;Lee Hyun;Lee Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.507-510
    • /
    • 2002
  • An algorithm of 3-D particle image velocimetry(3D-PIV) was developed for the measurement of 3-D velocity Held of complex flows. The measurement system consists of two or three CCD camera and one RGB image grabber. Flows size is $1500{\times}100{\times}180(mm)$, particle is Nylon12(1mm) and illuminator is Hollogen type lamp(100w). The stereo photogrammetry is adopted for the three dimensional geometrical mesurement of tracer particle. For the stereo-pair matching, the camera parameters should be decide in advance by a camera calibration. Camera parameter calculation equation is collinearity equation. In order to calculate the particle 3-D position based on the stereo photograrnrnetry, the eleven parameters of each camera should be obtained by the calibration of the camera. Epipolar line is used for stereo pair matching. The 3-D position of particle is calculated from the three camera parameters, centers of projection of the three cameras, and photographic coordinates of a particle, which is based on the collinear condition. To find velocity vector used 3-D position data of the first frame and the second frame. To extract error vector applied continuity equation. This study developed of various 3D-PIV animation technique.

  • PDF

Regional Projection Histogram Matching and Linear Regression based Video Stabilization for a Moving Vehicle (영역별 수직 투영 히스토그램 매칭 및 선형 회귀모델 기반의 차량 운행 영상의 안정화 기술 개발)

  • Heo, Yu-Jung;Choi, Min-Kook;Lee, Hyun-Gyu;Lee, Sang-Chul
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.798-809
    • /
    • 2014
  • Video stabilization is performed to remove unexpected shaky and irregular motion from a video. It is often used as preprocessing for robust feature tracking and matching in video. Typical video stabilization algorithms are developed to compensate motion from surveillance video or outdoor recordings that are captured by a hand-help camera. However, since the vehicle video contains rapid change of motion and local features, typical video stabilization algorithms are hard to be applied as it is. In this paper, we propose a novel approach to compensate shaky and irregular motion in vehicle video using linear regression model and vertical projection histogram matching. Towards this goal, we perform vertical projection histogram matching at each sub region of an input frame, and then we generate linear regression model to extract vertical translation and rotation parameters with estimated regional vertical movement vector. Multiple binarization with sub-region analysis for generating the linear regression model is effective to typical recording environments where occur rapid change of motion and local features. We demonstrated the effectiveness of our approach on blackbox videos and showed that employing the linear regression model achieved robust estimation of motion parameters and generated stabilized video in full automatic manner.

Real-Time Automatic Target Detection in CCD image (CCD 영상에서의 실시간 자동 표적 탐지 알고리즘)

  • 유정재;선선구;박현욱
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.99-108
    • /
    • 2004
  • In this paper, a new fast detection and clutter rejection method is proposed for CCD-image-based Automatic Target Detection System. For defence application, fast computation is a critical point, thus we concentrated on the ability to detect various targets with simple computation. In training stage, 1D template set is generated by regional vertical projection and K-means clustering, and binary tree structure is adopted to reduce the number of template matching in test stage. We also use adaptive skip-width by Correlation-based Adaptive Predictive Search(CAPS) to further improve the detecting speed. In clutter rejection stage, we obtain Fourier Descriptor coefficients from boundary information, which are useful to rejected clutters.

Motion Analysis Using Competitive Learning Neural Network and Fuzzy Reasoning (경쟁학습 신경망과 퍼지추론법을 이용한 움직임 분석)

  • 이주한;오경환
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.117-127
    • /
    • 1995
  • In this paper, we suggest a motion analysis method using ART-I1 competitive learning neural network and fuzzy reasoning by matching the same objects through the consecutive image sequence. we use the size and mean intensity of the region obtained from image segmentation for the region matching by the region and use a ART-I1 competitive learning neural network wh~ch has a learning ability to reflect the topology of the input patterns in order to select characteristic points to describe the shape of a region. Motion vectors for each regions are obtained by matching selected characteristic points. However, the two dimensional image, the projection of the the three dimensional real world, produces fuzziness in motion analysis due to its incompleteness by nature and the error from image segmentation used for extracting information about objects. Therefore, the belief degrees for each regions are calculated using fuzzy reasoning to l-nanipulate uncertainty in motion estimation.

  • PDF

Face Recognition Using Fisherface Algorithm and Fixed Graph Matching (Fisherface 알고리즘과 Fixed Graph Matching을 이용한 얼굴 인식)

  • Lee, Hyeong-Ji;Jeong, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.6
    • /
    • pp.608-616
    • /
    • 2001
  • This paper proposes a face recognition technique that effectively combines fixed graph matching (FGM) and Fisherface algorithm. EGM as one of dynamic link architecture uses not only face-shape but also the gray information of image, and Fisherface algorithm as a class specific method is robust about variations such as lighting direction and facial expression. In the proposed face recognition adopting the above two methods, linear projection per node of an image graph reduces dimensionality of labeled graph vector and provides a feature space to be used effectively for the classification. In comparison with a conventional EGM, the proposed approach could obtain satisfactory results in the perspectives of recognition speeds. Especially, we could get higher average recognition rate of 90.1% than the conventional methods by hold-out method for the experiments with the Yale Face Databases and Olivetti Research Laboratory (ORL) Databases.

  • PDF

Two-Stage Fast Block Matching Algorithm Using Integral Projections (가산 투영을 이용한 2단계 고속 블록정합 알고리즘)

  • 김준식;박래홍;이병욱
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.1
    • /
    • pp.45-55
    • /
    • 1993
  • In this paper, a two-stage block matching algorithm (BMA), which can reduce greatly the computational complexity of the conventional BMAs, is proposed, in which the onedimensional distortion measure based on the integral projection is introduced to determine the candidate motion vectors and then among them a final motion vector is detected based on the conventional two-dimensional distortion measure. Due to the one-dimensional calculation of a distortion measure, the proposed algorithm can reduce the computational complexity of the conventional BMA (full search method with a 16$\times$16 block) by a factor of 4, with its performance comparable to those of the conventional ones. Simulation results based on the original and noisy image sequences are shown. Also the simulation of the proposed method combined with the MPEG (Moving Picture Experts Group) SM3 (Simulation Model Three) is presented. Computer simulation shows that the proposed algorithm is fast with its performance comparable to those of the conventional ones.

  • PDF

Statistical Analysis of Projection-Based Face Recognition Algorithms (투사에 기초한 얼굴 인식 알고리즘들의 통계적 분석)

  • 문현준;백순화;전병민
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5A
    • /
    • pp.717-725
    • /
    • 2000
  • Within the last several years, there has been a large number of algorithms developed for face recognition. The majority of these algorithms have been view- and projection-based algorithms. Our definition of projection is not restricted to projecting the image onto an orthogonal basis the definition is expansive and includes a general class of linear transformation of the image pixel values. The class includes correlation, principal component analysis, clustering, gray scale projection, and matching pursuit filters. In this paper, we perform a detailed analysis of this class of algorithms by evaluating them on the FERET database of facial images. In our experiments, a projection-based algorithms consists of three steps. The first step is done off-line and determines the new basis for the images. The bases is either set by the algorithm designer or is learned from a training set. The last two steps are on-line and perform the recognition. The second step projects an image onto the new basis and the third step recognizes a face in an with a nearest neighbor classifier. The classification is performed in the projection space. Most evaluation methods report algorithm performance on a single gallery. This does not fully capture algorithm performance. In our study, we construct set of independent galleries. This allows us to see how individual algorithm performance varies over different galleries. In addition, we report on the relative performance of the algorithms over the different galleries.

  • PDF

Facial Image Segmentation using Wavelet Transform (웨이브렛 변환을 적용한 얼굴영상분할)

  • 김장원;박현숙;김창석
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.3
    • /
    • pp.45-52
    • /
    • 2000
  • In this study, we propose the image segmentation algorithm for facial region segmentation. The proposed algorithm separates the mean image of low frequency band from the differential image of high frequency band in order to make a boundary using HWT, and then we reduce the isolation pixels, projection pixels, and overlapped boundary pixels from the low frequency band. Also the boundaries are detected and simplified by the proposed boundary detection algorithm, which are cleared on the thinning process of 1 pixel unit. After extracting facial image boundary by using the proposed algorithm, we make the mask and segment facial image through matching original image. In the result of facial region segmentation experiment by using the proposed algorithm, the successive facial segmentation have 95.88% segmentation value.

  • PDF