• Title/Summary/Keyword: Programmable circuit

Search Result 195, Processing Time 0.031 seconds

Soft error correction controller for FPGA configuration memory (FPGA 재구성 메모리의 소프트에러 정정을 위한 제어기의 설계)

  • Baek, Jongchul;Kim, Hyungshin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5465-5470
    • /
    • 2012
  • FPGA(Field Programmable Gate Array) devices are widely used due to their merits in circuit development time, and development cost. Among various FPGA technologies, SRAM-based FPGAs have large cell capacity so that they are attractive for complex circuit design and their reconfigurability. However, they are weak in space environment where radiation energy particles cause Single Event Upset(SEU). In this paper, we designed a controller supervising SRAM-based FPGA to protect configuration memory inside. The controller is implemented on an Anti-Fusing FPGA. Radiation test was performed on the implemented computer board and the result show that our controller provides better SEU-resilience than TMR-only system.

A CMOS Analog Front End for a WPAN Zero-IF Receiver

  • Moon, Yeon-Kug;Seo, Hae-Moon;Park, Yong-Kuk;Won, Kwang-Ho;Lim, Seung-Ok;Kang, Jeong-Hoon;Park, Young-Choong;Yoon, Myung-Hyun;Yoo, June-Jae;Kim, Seong-Dong
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.769-772
    • /
    • 2005
  • This paper describes a low-voltage and low-power channel selection analog front end with continuous-time low pass filters and highly linear programmable-gain amplifier(PGA). The filters were realized as balanced Gm-C biquadratic filters to achieve a low current consumption. High linearity and a constant wide bandwidth are achieved by using a new transconductance(Gm) cell. The PGA has a voltage gain varying from 0 to 65dB, while maintaining a constant bandwidth. A filter tuning circuit that requires an accurate time base but no external components is presented. With a 1-Vrms differential input and output, the filter achieves -85dB THD and a 78dB signal-to-noise ratio. Both the filter and PGA were implemented in a 0.18um 1P6M n-well CMOS process. They consume 3.2mW from a 1.8V power supply and occupy an area of $0.19mm^2$.

  • PDF

FPGA Design and SoC Implementation of Constant-Amplitude Multicode Bi-Orthogonal Modulation (정진폭 다중 부호 이진 직교 변복조기의 FPGA 설계 및 SoC 구현)

  • Hong, Dae-Ki;Kim, Yong-Seong;Kim, Sun-Hee;Cho, Jin-Woong;Kang, Sung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11C
    • /
    • pp.1102-1110
    • /
    • 2007
  • In this paper, we design the FPGA (Field-Programmable Gate Array) of the CAMB (Constant-Amplitude Multi-code Biorthogonal) modulation, and implement the SoC (System on Chip). The ASIC (Application Specific Integrated Circuit) chip is be implemented through targeting and board test. This 12Mbps modem SoC includes the ARM (Advanced RISC Machine)7TDMI, 64Kbyte SRAM(Static Random Access Memory) and ADC (Analog to Digital Converter)/DAC (Digital to Analog Converter) for flexible applications. Additionally, the modem SoC can support the variable communication interfaces such as the 16-bits PCMCIA (Personal Computer Memory Card International Association), USB (Universal Serial Bus) 1.1, and 16C550 Compatible UART (Universal Asynchronous Receiver/Transmitter).

Quick Diagnosis of Short Circuit Faults in Cascaded H-Bridge Multilevel Inverters using FPGA

  • Ouni, Saeed;Zolghadri, Mohammad Reza;Rodriguez, Jose;Shahbazi, Mahmoud;Oraee, Hashem;Lezana, Pablo;Schmeisser, Andres Ulloa
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.56-66
    • /
    • 2017
  • Fast and accurate fault detection is the primary step and one of the most important tasks in fault tolerant converters. In this paper, a fast and simple method is proposed to detect and diagnosis the faulty cell in a cascaded H-bridge multilevel inverter under a short circuit fault. In this method, the reference voltage is calculated using switching control pulses and DC-Link voltages. The comparison result of the output voltage and the reference voltage is used in conjunction with active cell pulses to detect the faulty cell. To achieve this goal, the cell which is active when the Fault signal turns to "0" is detected as the faulty cell. Furthermore, consideration of generating the active cell pulses is completely described. Since the main advantage of this method is its simplicity, it can be easily implemented in a programmable digital device. Experimental results obtained with an 11-level inverter prototype confirm the effectiveness of the proposed fault detection technique. In addition, they show that the diagnosis method is unaffected by variations of the modulation index.

Analog Front-End IC for Automotive Battery Sensor (차량 배터리 센서용 Analog Front-End IC 설계)

  • Yeo, Jae-Jin;Jeong, Bong-Yong;Roh, Jeong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.10
    • /
    • pp.6-14
    • /
    • 2011
  • This paper presents the design of the battery sensor IC for instrumentation of current, voltage using delta-sigma ADC. The proposed circuit consists of programmable gain instrumentation amplifier (PGIA) and second-order discrete-time delta-sigma modulator with 1-bit quantization were fabricated by a 0.25 ${\mu}m$ CMOS technology. Design circuit show that the modulator achieves 82 dB signal-to-noise ratio (SNR) over a 2 kHz signal bandwidth with an oversampling ratio (OSR) of 256 and differential nonlinearity (DNL) of ${\pm}$ 0.3 LSB, integral nonlinearity (INL) of ${\pm}$ 0.5 LSB. Power consumption is 4.5 mW.

An FPGA Implementation of Parallel Hardware Architecture for the Real-time Window-based Image Processing (실시간 윈도우 기반 영상 처리를 위한 병렬 하드웨어 구조의 FPGA 구현)

  • Jin S.H.;Cho J.U.;Kwon K.H.;Jeon J.W.
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.223-230
    • /
    • 2006
  • A window-based image processing is an elementary part of image processing area. Because window-based image processing is computationally intensive and data intensive, it is hard to perform ail of the operations of a window-based image processing in real-time by using a software program on general-purpose computers. This paper proposes a parallel hardware architecture that can perform a window-based image processing in real-time using FPGA(Field Programmable Gate Array). A dynamic threshold circuit and a local histogram equalization circuit of the proposed architecture are designed using VHDL(VHSIC Hardware Description Language) and implemented with an FPGA. The performances of both implementations are measured.

A 3-5GHz frequency band Programmable Impulse Radio UWB Transmitter (3-5 GHz 대역 중심 주파수 변환이 가능한 프로그래머블 임펄스 래디오 송신기)

  • Han, Hong-Gul;Kim, Tae-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.6
    • /
    • pp.35-40
    • /
    • 2012
  • This paper has proposed a 3~5 GHz IR-UWB low power transmitter for range detection application. Proposed transmitter which has been implemented in a $0.13{\mu}m$ CMOS technology is all digital circuit that consist of simple digital logic. this feature insure low complexity and low power consumption. In addition, center frequency can be changed by adopting voltage controlled delay cell for avoiding existing another radio frequency in UWB low band. Proposed circuit consume only 10pJ/b from 1.2 V supply voltage. The simulation results show 3.3~4.3 GHz center frequency controllability, -51 dBm/MHz maximum output power and is satisfied with FCC regulation.

Implementation of Single-Phase Energy Measurement IC (단상 에너지 측정용 IC 구현)

  • Lee, Youn-Sung;Seo, Hae-Moon;Kim, Dong Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2503-2510
    • /
    • 2015
  • This paper presents a single-phase energy measurement IC to measure electric power quantities. The entire IC includes two programmable gain amplifiers (PGAs), two ${\sum}{\Delta}$ modulators, a reference circuit, a low-dropout (LDO) regulator, a temperature sensor, a filter unit, a computation engine, a calibration control unit, registers, and an external interface block. The proposed energy measurement IC is fabricated with $0.18-{\mu}m$ CMOS technology and housed in a 32-pin quad-flat no-leads (QFN) package. It operates at a clock speed of 4,096 kHz and consumes 10 mW in 3.3 V supply.

Fabrication of Security System for Preventing an intruder Using a Complex Programmable Logic Device(CPLD) (CPLD를 이용한 침입자 방지용 보안 시스템 제작)

  • Son, Ki-Hwan;Choi, Jin-Ho;Kwon, Ki-Ryong;Kim, Eung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.44-50
    • /
    • 2003
  • A security system consisted of an infrared sensor and PLD(Programmable Logic Device) was fabricated to prevent an intruder. The fabricated system detect the intruder using infrared sensor and has password key pad to permit someone to enter the house and office. The control circuit of the system is designed by VHDL(Very high speed integrated Hardware Description Language). The system was demonstrated in various conditions and the output signals were displayed in LCD, LED, buzzer and so on. This designed system in this paper has a advantage to supplement additional function with ease.

Design and Implementation of an FPGA-based Real-time Simulator for a Dual Three-Phase Induction Motor Drive

  • Gregor, Raul;Valenzano, Guido;Rodas, Jorge;Rodriguez-Pineiro, Jose;Gregor, Derlis
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.553-563
    • /
    • 2016
  • This paper presents a digital hardware implementation of a real-time simulator for a multiphase drive using a field-programmable gate array (FPGA) device. The simulator was developed with a modular and hierarchical design using very high-speed integrated circuit hardware description language (VHDL). Hence, this simulator is flexible and portable. A state-space representation model suitable for FPGA implementations was proposed for a dual three-phase induction machine (DTPIM). The simulator also models a two-level 12-pulse insulated-gate bipolar transistor (IGBT)-based voltage-source converter (VSC), a pulse-width modulation scheme, and a measurement system. Real-time simulation outputs (stator currents and rotor speed) were validated under steady-state and transient conditions using as reference an experimental test bench based on a DTPIM with 15 kW-rated power. The accuracy of the proposed digital hardware implementation was evaluated according to the simulation and experimental results. Finally, statistical performance parameters were provided to analyze the efficiency of the proposed DTPIM hardware implementation method.