• Title/Summary/Keyword: Program Simulation

Search Result 4,544, Processing Time 0.042 seconds

Development and Simulation of a Detecting Method using Reflectometry of Electrical Signal (전기적 신호의 반사파 측정법을 적용한 부식 진단 기술의 개발 및 시뮬레이션)

  • Yoon, Seung Hyun;Bang, Su Sik;Shin, Yong-June;Lim, Yun Mook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.367-372
    • /
    • 2018
  • Defects in aging infrastructures such as pre-stressed concrete bridges and cable bridges can cause a collapse of the entire structure. Defects, however, are often located inside of the structures that they are not visible from the outside. For example, in PSC bridges, because reinforcement steels are encased by exterior covers, corrosion and void on the reinforcement steel cannot be detected with a visual inspection. Therefore, in this paper, a new non-destructive evaluation(NDE) method that can detect defects inside of structures is presented. The new method utilizes sending of electrical signals, a method often utilized in electrical engineering to detect any discontinuities on power cables. In order to confirm the applicability and accuracy of the method, some experiments were conducted in the laboratory. And to overcome the hardship of conducting experiments on real structures due to their enormous size, simualtions were conudcted using a commercial program, COMSOL. The results of the experiments were analyzed and compared to confirm the accuracy of the simualtions.

Determination of Volume Porosity and Permeability of Drainage Layer in Rainwater Drainage System Using 3-D Numerical Method (3차원 수치해석기법을 이용한 우수배수시스템 배수층의 체적공극과 투수도 결정)

  • Yeom, Seong Il;Park, Sung Won;Ahn, Jungkyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.449-455
    • /
    • 2019
  • The increase in impermeable pavement from recent urbanization has resulted in an increase in surface runoff. The surface runoff has also increased the burden of the existing drainage system. This drainage system has structural limitations in that the catchment area is reduced by the waste particles transported with the surface runoff. In addition, the efficiency of the drainage system is decreased. To overcome these limitations, a new type of drainage system with a drainage layer was developed and applied. In this study, various volume porosity and permeability of the lower drainage layer were simulated using ANSYS CFX, which is a three dimensional computational fluid dynamics program. The results showed that the outlet velocity of the 35% volume porosity was faster than that of the 20% and 50% cases, and there was no relationship between the volume porosity and drainage performance. The permeability of the drainage layer can be determined from the particle size of the material, and a simulation of five conditions showed that 2 mm sand grains are most suitable for workability and usability. This study suggests appropriate values of the volume porosity and particle size of the drainage layer. This consideration can be advantageous for reducing and preventing flood damage.

The Factors Influence of Clinical Competency of Core Basic Nursing Skills During the Clinical Practice in Nursing Students (간호대학생의 임상실습 중 핵심기본간호술 수행자신감에 영향을 미치는 요인)

  • Kim, Dong-Ok;Byun, Soung-Won;Lee, Haejin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.85-92
    • /
    • 2019
  • This study was a descriptive study conducted to identify factors that had an influence on clinical competency of core basic nursing skills(CBNS) during the clinical practice in nursing students. Data were collected from 3rd and 4th grade 190 nursing students in G city using self-report questionnaire, and analyzed using descriptive statistics, the t-test, one way ANOVA, multiple regression with SPSS 23.0 program. This study found that the number of experience CBNS below 5 was 51.1%, and the number of observation CBNS over 11 was 78.4%. Clinical competency according to general characteristics, clinical practice satisfaction and the level of CBNS experience increased with male, increase age and grade, and major subject satisfaction and clinical practice satisfaction, especially, as the number of experience CBNS increased, clinical competency increased(p<0.001). But clinical competency did not differ according to the number of observation CBNS(p=0.463). The factors affecting the clinical competency of nursing students were age, grade, clinical practice satisfaction and the number of experience CBNS. Therefore, it is important to increase the opportunity to directly experience the various CBNS in clinical practice of nursing students in the nursing education curriculum, and it is necessary to find ways to actively use simulation education.

A Study on the Experience of Nursing Student's Clinical Education in School Practice: Focused on Psychiatric Nursing Practice (간호대학생의 임상실습 교과의 교내실습 경험연구: 정신간호학 실습을 중심으로)

  • Kim, Hyeun-sil;Kim, Eun-mi;Lee, Dong-suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.169-178
    • /
    • 2021
  • This study is a qualitative study to explore the experiences of nursing students' psychological nursing practice in-school. The subjects of this study were 62 students who were the 3rd grade nursing students at a University in Gangwon-do. The data were collected from August 3rd to August 20th, 2020. For data analysis, Colaizzi's qualitative analysis method was applied. Six categories were derived from data analysis: 1) Lingering affection for clinical practice in field. 2) Achievement through learning 3) Fear of nurse's role in future 4) Burden for many tasks 5) Feeling free of stress from clinical practice in field 6) Importance of cooperation with other departments. The positive aspects of in-school practice education, which from nursing students' evaluation, were immediate feedback, detailed explanations, and indirect experiences. Based on this study result, it is recommended to develop in-school nursing practice education program for gap-reducing with clinical practice. It would be consisted of various contents: simulation, online/non-face-to-face practice, face-to-face practice for indirect experience. In addition, these multi-aspect effort is needed more in psychological nursing practice education to reduce the gap with clinical practice such as therapeutic communication and hallucination interventions.

Factors Influencing in the Infection Control Performance of COVID-19 in Nurses (간호사의 COVID-19에 대한 감염관리 수행도에 영향을 미치는 요인)

  • Lee, Mi-Hyang;Kim, Min Young;Go, Young Jin;Kim, Doo Ree;Lim, Hyo Nam;Lee, Kyung Hwa;Yang, Sun-Yi
    • Journal of Digital Convergence
    • /
    • v.19 no.3
    • /
    • pp.253-261
    • /
    • 2021
  • This study was conducted to investigate the factors influencing in the infection control performance of coronavirus infection disease-19 in registered nurse. Data were collected using descriptive structured questionnaires to examine the factors of influencing in the infection control performance. General characteristics, knowledge of infection control, anxiety, fatigue, and coronavirus infection-19 (COVID-19) respiratory infection management performance were identified from structured questionnaire. Data were analyzed using independent t-test, ANOVA, correlation analysis, and multiple regression analysis were performed using the IBM SPSS 21.0 program. Anxiety and respiratory infection management performance was a negative correlation. Multiple regression analysis indicated anxiety was predicted component of performance of coronavirus infection-19 respiratory infection management. The results indicate a need to decrease degree of anxiety by developing educational programs to improve nurses' ability to manage coronavirus infection-19 respiratory infections. In addition, it is necessary to consider applying a role-play or simulation education method so that registered nurse can take care of patients with emerging infectious diseases in advance.

Safety Evaluation of Evacuation in a Dormitory Girls' High School based on PAPS (PAPS에 기반한 여자고등학교 기숙사생의 피난 안전성 평가)

  • Jeon, Seung-duk;Kong, Ha-sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.469-481
    • /
    • 2022
  • This study is for increasing evacuation safety by analyzing RSET(the required safe escape time) through the arrangement of personnel by floor and by room while evacuating in a Girls' High School Dormitory. For this study, PAPS(Physical Activity Promotion System) results that have not been studied so far were analyzed and reflected in evacuation simulations on the premise that individual student's physical strength can affect evacuation. Based on the PAPS results, four scenarios were applied. In addition, evacuation simulation using the pathfinder program was conducted in two situations: the evacuation route was assigned or not. Scenario 4 was the fastest at 168.5 seconds of RSET in assigning evacuation routes among scenarios. As a result of this study, the arrangement of students focusing on improving their academic ability and student life guidance excluding student physical strength has problem. In order to solve this problem, it is effective to place C group students(low grade on PAPS) on low floors and A group students(high grade on PAPS) on high floors and to assign evacuation routes in each room. In the future, the following ways need to be more studied. A study on how to increase evacuation safety through practical evacuation training, the way of assessing evacuation safety reflecting the lifestyle and physical strength of girls, the evacuation route assignment according to the fire occurrence point, and the method to secure evacuation routes in the event of a fire near stairs or entrances should be conducted.

Modeling 2D residence time distributions of pollutants in natural rivers using RAMS+ (RAMS+를 이용한 하천에서 오염물질의 2차원 체류시간 분포 모델링)

  • Kim, Jun Song;Seo, Il Won;Shin, Jaehyun;Jung, Sung Hyun;Yun, Se Hun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.495-507
    • /
    • 2021
  • With the recent industrial development, accidental pollution in riverine environments has frequently occurred. It is thus necessary to simulate pollutant transport and dispersion using water quality models for predicting pollutant residence times. In this study, we conducted a field experiment in a meandering reach of the Sum River, South Korea, to validate the field applicability and prediction accuracy of RAMS+ (River Analysis and Modeling System+), which is a two-dimensional (2D) stream flow/water quality analysis program. As a result of the simulation, the flow analysis model HDM-2Di and the water quality analysis model CTM-2D-TX accurately simulated the 2D flow characteristics, and transport and mixing behaviors of the pollutant tracer, respectively. In particular, CTM-2D-TX adequately reproduced the elongation of the pollutant cloud, caused by the storage effect associated with local low-velocity zones. Furthermore, the transport model effectively simulated the secondary flow-driven lateral mixing at the meander bend via 2D dispersion coefficients. We calculated the residence time for the critical concentration, and it was elucidated that the calculated residence times are spatially heterogeneous, even in the channel-width direction. The findings of this study suggest that the 2D water quality model could be the accidental pollution analysis tool more efficient and accurate than one-dimensional models, which cannot produce the 2D information such as the 2D residence time distribution.

Assessment of DTVC Operation Efficiency for the Simulation of High Vacuum and Cryogenic Lunar Surface Environment (고진공 및 극저온 달의 지상 환경 재현을 위한 지반열진공챔버 운영 효율성 평가)

  • Jin, Hyunwoo;Chung, Taeil;Lee, Jangguen;Shin, Hyu-Soung;Ryu, Byung Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.125-134
    • /
    • 2022
  • The Global Expansion Roadmap published by the International Space Exploration Coordination Group, which is organized by space agencies around the world, presents future lunar exploration guidance and stresses a lunar habitat program to utilize lunar resources. The Moon attracts attention as an outpost for deep space exploration. Simulating lunar surface environments is required to evaluate the performances of various equipment for future lunar surface missions. In this paper, an experimental study was conducted to simulate high vacuum pressure and cryogenic temperature of the permanent shadow regions in the lunar south pole, which is a promising candidate for landing and outpost construction. The establishment of an efficient dirty thermal vacuum chamber (DTVC) operation process has never been presented. One-dimensional ground cooling tests were conducted with various vacuum pressures with the Korean Lunar Simulant type-1 (KLS-1) in DTVC. The most advantageous vacuum pressure was found to be 30-80 mbar, considering the cooling efficiency and equipment stability. However, peripheral cooling is also required to simulate a cryogenic for not sublimating ice in a high vacuum pressure. In this study, an efficient peripheral cooling operation process was proposed by applying the frost ratio concept.

A Study on the Self-absorption Correction Method of HPGe Gamma Spectrocopy Analysis System Using Check Source (Check Source를 이용한 HPGe감마핵종분석시스템의 자체흡수 보정방법 연구)

  • Jeong-Soo, Park;Hyo-Jin, Lim;Hyun-Soo, Seo;Da-bin, Jang;Myoung-Joon, Kim;Sang-Bok, Lee;Sung-Min, Ahn
    • Journal of radiological science and technology
    • /
    • v.45 no.6
    • /
    • pp.523-529
    • /
    • 2022
  • Gamma spectroscopy analysis is widely used for radioactivity analysis, and various factors are required for radioactivity calculations. Among the factors, K3 for each sample significantly influences the results. The previous methods of correcting the self-absorption effect include a computational simulation method and a method that requires making a CRM(certified reference material) identical to the sample medium. However, the above methods have limitations when used in small institutions because they require specialized program utilization skills or high manufacturing costs and large facilities. The aim of this study is to develop a method that can be easily and rapidly applied to radioactivity analysis. After filling the beaker with water, we placed the radiation source in a uniform position and used the measured value as the benchmark. Next, a correction factor was derived based on the difference in the radiation source count of the benchmark and the identically measured sample. For the radiation source, Eu-152, which emits a broad range of energy within the measurement range of gamma rays, and Cs-134 and Cs-137, which are indicator nuclides in environmental radiation analysis, were used. The sample was selected within the density range of 0.26-2.11 g/cm3, and the correction factor was derived by calculating the count difference of each sample compared to the reference value of water. This study presents a faster and more convenient method than the existing research methods for determining the self-absorption effect correction, which has become increasingly necessary.

Development of Time-Cost Trade-Off Algorithm for JIT System of Prefabricated Girder Bridges (Nodular GIrder) (프리팹 교량 거더 (노듈러 거더)의 적시 시공을 위한 공기-비용 알고리즘 개발)

  • Kim, Dae-Young;Chung, Taewon;Kim, Rang-Gyun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.3
    • /
    • pp.12-19
    • /
    • 2023
  • In the case of the construction industry, the relationship between process and cost should be appropriately distributed so that the finished product can be delivered at the minimum fee within the construction period. At that time, it should be considered the size of the bridge, the construction method, the environment and production capacity of the factory, and the transport distance. However, due to various reasons that occur during the construction period, problems such as construction delay, construction cost increase, and quality and reliability degradation occur. Therefore, a systematic and scientific construction technique and process management technology are needed to break away from the conventional method. The prefab(Pre-Fabrication) is a representative OSC (Off-Site Construction) method manufactured in a factory and constructed onsite. This study develops a resource and process plan optimization system for the process management of the Nodular girder, a prefab bridge girder. A simulation algorithm develops to automatically test various variables in the personnel equipment mobilization plan to derive the optimal value. And, the algorithm was applied to the Paju-Pocheon Expressway Construction (Section 3) Dohwa 4 Bridge under construction, and the results compare. Based on construction work standard product calculation, actual input manpower, equipment type, and quantity were applied to the Activity Card, and the amount of work by quantity counting, resource planning, and resource requirements was reflected. In the future, we plan to improve the accuracy of the program by applying forecasting techniques including various field data.