• Title/Summary/Keyword: Profile accuracy

Search Result 574, Processing Time 0.026 seconds

The Accuracy Estimation of Profile Generation for Planning using 3D Topographical Model (3차원 지형모델을 이용한 설계용 프로파일 생성 정확도 평가)

  • Um, dae-yong;Lee, eun-soo;Kim, ji-hye
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.892-896
    • /
    • 2008
  • In construction work's process of a basic planning, we must carry out a topographical for construction reserved land and to the basis of this, production of profile is Indispensable factor for the purpose of every construction work such as road, rail way, canal and etc. From this research, the production of profile about construction reserved land, using topography information of numerical value topographical map produced by NGIS construction project, construct precision 3D topography model and from this, propose plans for utilizing by producing automatic profile. With the aim of this, abstract every layers of main facilities and altitude from numerical value topographical map and while producing 3D topography model by using this, we produce and product automatic profile from construct precision 3D topography. And about the produced profile's process, a topographical by mutual analysis was carried out to check whether the automatic produced profile's accuracy could be accepted at actual estimation and permissible accuracy. It is considered that the result of the research could be suggested as a new formation techniques concept which can reduce the designing time and expenses and increase the efficiency of planning in the basic design process for the construction.

  • PDF

Corrective Machining Algorithm for Improving the Motion Accuracy of Hydrostatic Table (유정압테이블의 정밀도향상을 위한 수정가공 알고리즘)

  • Park, Chun-Hong;Lee, Chan-Hong;Lee, Hu-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.62-69
    • /
    • 2002
  • For improving the motion accuracy of hydrostatic table, corrective machining algorithm is proposed in this paper. The algorithm consists of three main processes. reverse analysis is performed firstly to estimate rail profile from measured linear and angular motion error, in the algorithm. For the next step, corrective machining information is decided as referring to the estimating rail profile. Finally, motion errors on correctively machined rail are analized by using motion error analysis method proposed in the previous paper. These processes can be iterated until the analized motion errors are satisfied with target accuracy. In order to verify the validity of the algorithm theoretically, motion errors by the estimated rail, after corrective machining, are compared with motion errors by true rail assumed as the measured value. Estimated motion errors show good agreement with assumed values, and it is confirmed that the algorithm is effective to acquire the corrective machining information to improve the accuracy of hydrostatic table.

Optimal Threshold from ROC and CAP Curves (ROC와 CAP 곡선에서의 최적 분류점)

  • Hong, Chong-Sun;Choi, Jin-Soo
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.5
    • /
    • pp.911-921
    • /
    • 2009
  • Receiver Operating Characteristic(ROC) and Cumulative Accuracy Profile(CAP) curves are two methods used to assess the discriminatory power of different credit-rating approaches. The points of optimal classification accuracy on an ROC curve and of maximal profit on a CAP curve can be found by using iso-performance tangent lines, which are based on the standard notion of accuracy. In this paper, we offer an alternative accuracy measure called the true rate. Using this rate, one can obtain alternative optimal threshold points on both ROC and CAP curves. For most real populations of borrowers, the number of the defaults is much less than that of the non-defaults, and in such cases the true rate may be more efficient than the accuracy rate in terms of cost functions. Moreover, it is shown that both alternative scores of optimal classification accuracy and maximal profit are the identical, and this single score coincides with the score corresponding to Kolmogorov-Smirnov statistic used to test the homogeneous distribution functions of the defaults and non-defaults.

Retrieval and Accuracy Evaluation of Horizontal Winds from Doppler Lidars During ICE-POP 2018 (도플러 라이다를 이용한 ICE-POP 2018 기간 수평바람 연직 프로파일 산출 및 정확도 평가)

  • Kim, Kwonil;Lyu, Geunsu;Baek, SeungWoo;Shin, Kyuhee;Lee, GyuWon
    • Atmosphere
    • /
    • v.32 no.2
    • /
    • pp.163-178
    • /
    • 2022
  • This study aims to evaluate the accuracy of retrieved horizontal winds with different quality control methods from three Doppler lidars deployed over the complex terrain during the PyeongChang 2018 Olympic and Paralympic games. To retrieve the accurate wind profile, this study also proposes two quality control methods to distinguish between meteorological signals and noises in the Doppler velocity field, which can be broadly applied to different Doppler lidars. We evaluated the accuracy of retrieved winds with the wind measurements from the nearby or collocated rawinsondes. The retrieved wind speed and direction show a good agreement with rawinsonde with a correlation coefficient larger than 0.9. This study minimized the sampling error in the wind evaluation and estimation, and found that the accuracy of retrieved winds can reach ~0.6 m s-1 and 3° in the quasi-homogeneous wind condition. We expect that the retrieved horizontal winds can be used in the high-resolution analysis of the horizontal winds and provide an accurate wind profile for model evaluation or data assimilation purposes.

Dual Reciprocity Boundary Element Analysis for the Graetz Problem in Circular Duct (원형 덕트유동에서의 Graetz 문제에 대한 이중교환 경계요소 해석)

  • Choi, Chang Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.243-253
    • /
    • 1999
  • The dual reciprocity boundary element method (DRBEM) is used to solve the Graetz problem of laminar flow inside circular duct. In this method the domain integral tenn of boundary integral equation resulting from source term of governing equation is transformed into equivalent boundary-only integrals by using the radial basis interpolation function, and therefore complicate domain discretization procedure Is completely removed. Velocity profile is obtained by solving the momentum equation first and then, using this velocities as Input data, energy equation Is solved to get the temperature profile by advancing from duct entrance through the axial direction marching scheme. DRBEM solution is tested for the uniform temperature and heat flux boundary condition cases. Local Nusselt number, mixed mean temperature and temperature profile inside duct at each dimensionless axial location are obtained and compared with exact solutions for the accuracy test Solutions arc in good agreement at the entry region as well as fully developed region of circular duct, and their accuracy are verified from error analysis.

Development of a Real-time 3D Intraoral Scanner Based on Fringe-Projection Technique (프린지 투영법을 이용한 실시간 3D 구강 내 스캐너의 개발)

  • Ullah, Furqan;Lee, Gunn-Soo;Park, Kang
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.3
    • /
    • pp.156-163
    • /
    • 2012
  • Real-time three-dimensional shape measurement is becoming increasingly important in various fields, including medical sciences, high-technology industry, and microscale measurements. However, there are not so many 3D profile tools specially designed for specifically narrow space, for example, to scan the tooth shape of a human jaw. In this paper, a real-time 3D intraoral scanner is proposed for the measurement of tooth profile in the mouth cavity. The proposed system comprises a laser diode beam, a micro charge-coupled device, a graticule, a piezoelectric transducer, a set of optical lenses, and a polhemus device sensor. The phase-shifting technique is used along with an accurate calibration method for the measurement of the tooth profile. Experimental and theoretical inspection of the phase-to-coordinate relation is presented. In addition, a nonlinear system model is developed for collimating illumination that gives the more accurate mathematical representation of the system, thus improves the shape measurement accuracy. Experiment results are presented to verify the feasibility and performance of the developed system. The experimental results indicate that overall measurement error accuracy can be controlled within 0.4 mm with a variability of ${\pm}0.01$.

Chucking Compliance Compensation by Using Linear Motor (리니어 모터를 이용한 척킹 컴플라이언스 보상)

  • Lee, Seon-Gyu;Lee, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.15-22
    • /
    • 2002
  • This paper introduces a compensating system for machining error, which is resulted from chucking with separated jaws. In machining the chucked cylindrical workpiece, the deterioration of machining accuracy, such as out-of-roundness is inevitable due to the variation of the radial compliance of the chuck workpiece system which is caused by the position of jaws with respect to the direction of the applied force. To compensate the chucking compliance induced error, firstly roundness profile of workpiece due to chucking compliance after machining needs to be predicted. Then using this predicted profile, the compensated tool feed trajectory can be generated. And by synchronizing the cutting tool feed system with workpiece rotation, the chucking compliance induced error can be compensated. To satisfy the condition that the cutting tool feed system must provide high speed and high position accuracy, brushless linear DC motor is used. In this study, firstly through the force-deflection experiment in workpiece chucked lathe, the variation of radial compliance of chuck workpiece system is obtained. Secondly using the mathematical equation and cutting experiment result, the predicted profile of workpiece and its compensation tool trajectory are generated. Thirdly the configuration of compensation system using linear motor is introduced, and to improve the system performance, PID controller is designed. Finally the tracking performance of system is examined by experiment. Through the real cutting experiment, roundness is significantly improved.

Finite Element Model for Wear Analysis of Conventional Friction Stir Welding Tool

  • Hyeonggeun Jo;Ilkwang Jang;Yeong Gil Jo;Dae Ha Kim;Yong Hoon Jang
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.118-122
    • /
    • 2023
  • In our study, we develop a finite element model based on Archard's wear law to predict the cumulative wear and the evolution of the tool profile in friction stir welding (FSW) applications. Our model considers the rotational and translational behaviors of the tool, providing a comprehensive description of the wear process. We validate the accuracy of our model by comparing it against experimental results, examining both the predicted cumulative wear and the resulting changes to the tool profile caused by wear. We perform a detailed comparison between the predictions of the model and experimental data by manipulating non-dimensional coefficients comprising model parameters, such as element sizes and time increments. This comparison facilitates the identification of a specific non-dimensional coefficient condition that best replicates the experimentally observed cumulative wear. We also directly compare the worn tool profiles predicted by the model using this specific non-dimensional coefficient condition with the profiles obtained from wear experiments. Through this process, we identify the model settings that yield a tool wear profile closely aligning with the experimental results. Our research demonstrates that carefully selecting non-dimensional coefficients can significantly enhance the predictive accuracy of finite element models for tool wear in FSW processes. The results from our study hold potential implications for enhancing tool longevity and welding quality in industrial applications.

Numerical Study on the Effects of Velocity Profile Distortion and Swirl on Pressure Difference of Orifice Flowmeter Due to Pipe structure (배관구조에 따른 속도분포 변형과 선회가 오리피스 유량계의 압력차에 미치는 영향에 대한 수치적 연구)

  • Kim, Hong-Min;Kim, Kwang-Yong;Her, Jae-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1450-1456
    • /
    • 2003
  • Three-dimensional pipe flows with elbows, tees and headers in three different pipe systems are calculated to estimate the effect of asymmetry of axial velocity profile and swirl on measuring accuracy of an orifice flowmeter. It is evaluated how the pressure difference across the orifice is dependent on the upstream straight pipe length and how swirl intensity, swirl angle, and axial velocity distribution affect the measuring error of the orifice flowmeter. From the results, it is found that variation of the pressure difference across the orifice is negligible in case that maximum swirl angle is less than 2$^{\circ}$, and also that the pressure difference across the orifice is more sensitive to the asymmetry of axial velocity profile rather than the swirl intensity.

Study on the Generation of Machining Program for Large Screws Defined by Longitudinal-Section Profile (축 평형단면의 형상정의에 의한 대형 스크류 가공프로그램 생성에 관한 연구)

  • 이원규;이민환;안중환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.83-88
    • /
    • 2000
  • In machining large screws such as those of extruders, it takes long time to machine them on conventional machines which usually use single-tipped fixed tools. And it is also difficult to use an existing CAD/CAM coftware when trying to get over the problems of conventional machines and making use of CNC machines. In this paper, generation of machining program using rotational tools for large screws defined by longitudinal-section profile is descrebed. Use of rotational tools in machining plays an important role in saving machining time. In the sort of extruder screws, it is easy to define a screw shape by longitudinal-section profile, and by which improvement of dimensional accuracy can be expected. The CAM software developed in this paper is based on user's and designer's friendliness.

  • PDF