• Title/Summary/Keyword: Profile Curve

Search Result 381, Processing Time 0.031 seconds

Prediction of propagated wave profiles based on point measurement

  • Lee, Sang-Beom;Choi, Young-Myoung;Do, Jitae;Kwon, Sun-Hong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.175-185
    • /
    • 2014
  • This study presents the prediction of propagated wave profiles using the wave information at a fixed point. The fixed points can be fixed in either space or time. Wave information based on the linear wave theory can be expressed by Fredholm integral equation of the first kinds. The discretized matrix equation is usually an ill-conditioned system. Tikhonov regularization was applied to the ill-conditioned system to overcome instability of the system. The regularization parameter is calculated by using the L-curve method. The numerical results are compared with the experimental results. The analysis of the numerical computation shows that the Tikhonov regularization method is useful.

Clinical application of maxillary tissue bone-borne expander and biocreative reverse curve system in the orthodontic retreatment of severe anterior open bite with transverse discrepancy: A case report

  • Choi, Jin-Young;Jin, Bai;Kim, Seong-Hun
    • The korean journal of orthodontics
    • /
    • v.52 no.5
    • /
    • pp.372-382
    • /
    • 2022
  • Anterior open bite and transverse discrepancy are often accompanied by hyperdivergent skeletal patterns. In addition, degenerative joint disorders and vertical maxillary excess contribute to an unfavorable convex facial profile with a retruded chin. Correction of this complex three-dimensional problem with orthodontic treatment alone is considered challenging owing to anatomical limitations. Moreover, a history of orthodontic treatment with premolar extraction makes retreatment difficult. This case report illustrates the application of a maxillary tissue bone-borne expander and biocreative reverse curve system in a 23-year-old female patient with a severe anterior open bite and transverse discrepancy who underwent orthodontic treatment with four premolar extractions. By setting the treatment target under precise diagnosis and using appropriate appliances, a satisfactory treatment result could be achieved without orthognathic surgery.

An improved NC-code generation method for circular interpolation (새로운 원호보간법에 의한 공구경로의 생성)

  • Yang, Min-Yang;Shon, Tae-Young;Cho, Hyun-Deog
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.77-83
    • /
    • 1997
  • This work is concerned with the algorithm of generating a new circular are interpolation. This research presents a new biarc curve fitting that is a circular interpolation method based on a triarc curve fitting. The triarc method, where a segment span is composed of three circular arcs, using maximum error estimation has the advantage of generating arc splines easily to a given tolerance. The new biarc method is called when the adjacent radii are the same in the same in the triarc method. In generating the machining data for various cam curves in CNC machining with the biarc method and the new biarc method, the latter accomp- lished faster NC-code generation, shorter NC-code block formation and machined the same cam profile more efficiently.

  • PDF

Study on Optimum Curve Driving of Four-row Tracked Vehicle in Soft Ground using Multi-body Dynamics (다물체 동역학을 이용한 연약 지반 4열 궤도 차량의 최적 선회 주행 연구)

  • Oh, Jae-Won;Lee, Chang-Ho;Hong, Sup;Bae, Dae-Sung;Lim, Jun-Hyun;Kim, Hyung-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.167-176
    • /
    • 2014
  • This paper proposes an optimum curve driving method for adeep-seabed mining robot(MineRo) in deep-sea soft ground. MineRo was designed as afour-row tracked vehicle. A study on the turning methods for the four-row tracked vehicle was conducted using three case by changing the velocity profile of each track. The configuration of the four-row tracked vehicle and soft ground equation are introduced, along with the dynamics analysis models of MineRo and soft ground, which were constructed using the commercial software DAFUL. Because the purpose of this study was to investigate a driving method on soft ground, the marine environment of the deep sea was not considered.

ROENTGENOCEPHALOMETRIC STUDY ON CRANIOFACIAL MORPHOLOGY OF DEEPBITES (과개교합자의 악안면 형태에 관한 두부 X-선사진 계측학적 연구)

  • Kim, Hee-Jeong;Nahm, Dong-Seok
    • The korean journal of orthodontics
    • /
    • v.23 no.3 s.42
    • /
    • pp.341-358
    • /
    • 1993
  • This study was investigated to evaluate the morphologic characteristics of deepbite tendency as multiple factors. The subjects consisted of 60 control subjects(male 25, female 35) and 137 deephite patients(68 male, 69 female). The deepbite group was composed of 4 subgroups(Class I 44, Class II div. 1 40, Class II div. 2 13, Class III 40). The mean age was 21.57 year for the control group 21 year for deepbite group lateral cephalograph in centric occlusion were taken, traced, and digitized for each subject. The statistically computerized analysis was carried out with SAS program. The results were as follows ; 1. In deepbite group, saddle angle is lesser than that of normal group. 2. The vertical dysplasia is prominent on anterior lower face and is closely related with mandibular form and inclination. 3. Without consideration of sagittal relationship, the dental factors such as curve of Spee, interincisal angle, U1 to upper lip length were prominent in the deepbite group. 4. Although there were individual variances in the perioral soft tissue profile, the lip presented more protruded pattern. 5. There was no significant difference in hyoid bone position and inclination between normal and deepbite group. 6. The multivariate discriminant analysis between normal and Class I deepbite group showed that curve of Spee, AB-MP angle, interincisal angle, articular agnle were critical in the determination of deepbite as multiple factors.

  • PDF

Effect of the density profile of a star on the bolometric light curve in tidal disruption events

  • Park, Gwanwoo;Kimitake, Hayasaki
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.56.1-56.1
    • /
    • 2018
  • Tidal disruption events (TDEs) provide evidence for quiescent supermassive black holes (SMBHs) in the centers of inactive galaxies. TDEs occur when a star on a parabolic orbit approaches close enough to a SMBH to be disrupted by the tidal force of the SMBH. The subsequent super-Eddington accretion of stellar debris falling back to the SMBH produces a characteristic flare lasting several months. The theoretically expected bolometric light curve decays with time as proportional to $t^{-5/3}$. However, the light curves observed in most of the optical-UV TDEs deviate from the $t^{-5/3}$ decay rate especially at early time, while the light curves of some soft-X-ray TDEs are overall in good agreement with the $t^{-5/3}$ law. Therefore, it is required to construct the theoretical model for explaining these light curve variations consistently. In this paper, we revisit the mass fallback rates analytically and semi-analytically by taking account of the structure of the star, which is simply modeled by the polytrope. We find the relation between a polytropic index and the power law index of the mass fallback rate. We also discuss whether and how the decay curves, which we derived, fit the observed ones.

  • PDF

3D finite element simulation of human proximal femoral fracture under quasi-static load

  • Hambli, Ridha
    • Advances in biomechanics and applications
    • /
    • v.1 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • In this paper, a simple and accurate finite element model coupled to quasi-brittle damage law able to describe the multiple cracks initiation and their progressive propagation is developed in order to predict the complete force-displacement curve and the fracture pattern of human proximal femur under quasi-static load. The motivation of this work was to propose a simple and practical FE model with a good compromise between complexity and accuracy of the simulation considering a limited number of model parameters that can predict proximal femur fracture more accurately and physically than the fracture criteria based models. Different damage laws for cortical and trabecular bone are proposed based on experimental results to describe the inelastic damage accumulation under the excessive load. When the damage parameter reaches its critical value inside an element of the mesh, its stiffness matrix is set to zero leading to the redistribution of the stress state in the vicinity of the fractured zone (crack initiation). Once a crack is initiated, the propagation direction is simulated by the propagation of the broken elements of the mesh. To illustrate the potential of the proposed approach, the left femur of a male (age 61) previously investigated by Keyak and Falkinstein, 2003 (Model B: male, age 61) was simulated till complete fracture under one-legged stance quasi-static load. The proposed finite element model leads to more realistic and precise results concerning the shape of the force-displacement curve (yielding and fracturing) and the profile of the fractured edge.

Analytical behavior of longitudinal face dowels based on an innovative interpretation of the ground response curve method

  • Rahimpour, Nima;Omran, Morteza MohammadAlinejad;Moghaddam, Amir Bazrafshan
    • Geomechanics and Engineering
    • /
    • v.30 no.4
    • /
    • pp.363-372
    • /
    • 2022
  • One of the most frequent issues in tunnel excavation is the collapse of rock blocks and the dropping of rock fragments from the tunnel face. The tunnel face can be reinforced using a number of techniques. One of the most popular and affordable solutions is the use of face longitudinal dowels, which has benefits including high strength, flexibility, and ease of cutting. In order to examine the reinforced face, this work shows the longitudinal deformation profile and ground response curve for a tunnel face. This approach is based on assumptions made during the analysis phase of problem solving. By knowing the tunnel face response and dowel behavior, the interaction of two elements can be solved. The rock element equation derived from the rock bolt method is combined with the dowel differential equation to solve the reinforced ground response curve (GRC). With a straightforward and accurate analytical equation, the new differential equation produces the reinforced displacement of the tunnel face at each stage of excavation. With simple equations and a less involved computational process, this approach offers quick and accurate solutions. The FLAC3D simulation has been compared with the suggested analytical approach. A logical error is apparent from the discrepancies between the two solutions. Each component of the equation's effect has also been described.

Mass models of the Large Magellanic Cloud: HI gas kinematics

  • Kim, Shinna;Oh, Se-Heon;For, Bi-Qing;Sheen, Yun-Kyeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.60.3-61
    • /
    • 2020
  • We perform disk-halo decomposition of the Large Magellanic Cloud (LMC) using a novel HI velocity field extraction method, aimed at better deriving its HI kinematics and thus the dark matter density profile. For this, we use two newly developed galaxy kinematic analysis tools, BAYGAUD and 2DBAT which have been used for the kinematic analysis of resolved galaxies from Australian Square Kilometre Array (ASKAP) observations like WALLABY which is an all-sky HI galaxy survey in southern sky. By applying BAYGAUD to the combined HI data cube of the LMC taken with the Australia Telescope Compact Array (ATCA) and Parkes radio telescopes, we decompose all the line-of-sight velocity profiles into an optimal number of Gaussian components based on Bayesian MCMC techniques. From this, we disentangle turbulent non-circular gas motions from the overall rotation of the galaxy. We then derive the rotation curve of the LMC by applying 2DBAT to the separated circular motions. The rotation curve reflecting the total kinematics of the LMC, dark and baryonic matters is then be combined with the mass models of baryons, mainly stellar and gaseous components in order to examine the dark matter distribution. Here, we present the analysis of the extracted HI gas maps, rotation curve, and J, H and K-band surface photometry of the LMC.

  • PDF

A Study on the Curving Performance of a Scaled Bogie on a Scaled Curve Track (축소 곡선 트랙상에서의 축소 대차 곡선주행특성 연구)

  • Hur, Hyun-Moo;Park, Joon-Hyuk;You, Won-Hee;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.613-618
    • /
    • 2007
  • The performance of the railway bogie is classified into the stability and the steering performance. Testing for the bogie stability is conducted on the roller rig, but testing for the bogie steering performance on test facility is very difficult, so the testing for the vehicle curving performance is conducted on the real curve track. Testing the railway bogie on the full scale test rig is desirable, but it caused many problems relating to test costs and test time. As a possible alternative to overcome these problems, a small scaled test rig is actively used in the field of bogie stability. Thus, in this paper, we have studied a scaled track to test the bogie steering performance. For this purpose, we designed the 1/5 scaled test track equivalent to radius 200 curve and confirmed the validity of the testing for the bogie steering performance on the sealed curve track through the testing using 1/5 scaled bogie.