• Title/Summary/Keyword: Production-based $CO_2$ Emissions

Search Result 72, Processing Time 0.032 seconds

The effect of nuclear energy on the environment in the context of globalization: Consumption vs production-based CO2 emissions

  • Danish, Danish;Ulucak, Recep;Erdogan, Seyfettin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1312-1320
    • /
    • 2022
  • The earlier studies have analyzed theoretical links between nuclear energy and carbon dioxide (CO2) emissions concerning territorial (or production-based) emissions. Here using the latest available dataset, this study explores the impacts of nuclear energy on production-based and consumption-based CO2 emission in the era of globalization for the Organization for Economic Co-operation and Development (OECD) countries. The Driscoll-Kraay regression method reveals that nuclear energy is beneficial for the reduction of production-based CO2 emissions. However, it is revealed that nuclear energy does not reduce consumption-based CO2 emissions that are traded internationally and hence not comprised in conventional production-based emissions (territory) inventories. Globalization tends to reduce both production-based and demand-based carbon emissions. Finally, Environmental Kuznets Curve (EKC) is validated for both kinds of CO2 emissions. The findings may deliver practical policy implications related to nuclear energy and CO2 emissions for selected countries.

Comparing Production- and Consumption- based CO2 Emissions by Economic Growth

  • Jooman Noh;Hong Chong Cho
    • Journal of Korea Trade
    • /
    • v.26 no.8
    • /
    • pp.21-36
    • /
    • 2022
  • Purpose - Carbon emission standards are based on the "production-based carbon emissions" generated by the production of goods in the relevant country which were the existing measurement methods. However, can such carbon emissions measurement standards be established international? For example, some of the goods produced in developing countries are produced for the demand of developed countries. The method of measuring carbon emission based on the final demand of a certain country is called "consumption-based carbon emissions." This study compares productionand consumption-based CO2 emissions according to economic growth in ninety-three countries categorized by income level. Design/methodology - Our empirical model considers the difference between production- and consumption-based CO2 emissions according to economic growth. Also, our model investigated whether the EKC hypothesis in most of the previous studies that had been based on production-based emissions was also established in the consumption-based emission model. Considering the continuous characteristics of CO2, we utilized the generalized method of moments (GMM), specifically a system GMM econometric technique because CO2 in the previous period can affect CO2 in the present period. Findings - Our main findings can be summarized as follows: The results show that for the consumption-based CO2 emissions model, CO2 continuously increases as economic growth increases in the upper-middle income countries. The inverted U-shaped result was found in the case of the production-based model. However, in the lower-income countries, an inverted-U shape in which CO2 emissions decrease at some point as the economy grows in the production-based model does not appear. On the other hand, in the consumption-based model, an inverted U-shaped result was obtained when estimating with system-GMM. Additionally, the proportion of manufacturing, energy imports, and energy consumption had an effect on both the production- and the consumption-based model regardless of the group's CO2 emissions. On the basis of such assessments, policymakers need to consider not only production- but also consumption-based options. Originality/value - Previous studies have mainly focused on production-based CO2 emissions, with most of them revolving around economic growth or the effect of various social and economic factors on CO2 emissions. However, this study considers the relationship with economic growth using consumption-based emissions as a dependent variable by classifying ninety-three countries by income level.

Assessment of the Contribution of Poultry and Pig Production to Greenhouse Gas Emissions in South Korea Over the Last 10 Years (2005 through 2014)

  • Boontiam, Waewaree;Shin, Yongjin;Choi, Hong Lim;Kumari, Priyanka
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.12
    • /
    • pp.1805-1811
    • /
    • 2016
  • The goal of this study was to estimate the emissions of greenhouse gases (GHG), namely methane ($CH_4$), nitrous oxide ($N_2O$), and carbon dioxide ($CO_2$) from poultry and pig production in South Korea over the last 10 years (2005 through 2014). The calculations of GHG emissions were based on Intergovernmental Panel on Climate Change (IPCC) guidelines. Over the study period, the $CH_4$ emission from manure management decreased in layer chickens, nursery to finishing pigs and gestating to lactating sows, but there was a gradual increase in $CH_4$ emission from broiler chickens and male breeding pigs. Both sows and nursery to finishing pigs were associated with greater emissions from enteric fermentation than the boars, especially in 2009. Layer chickens produced lower direct and indirect $N_2O$ emissions from 2009 to 2014, whereas the average direct and indirect $N_2O$ emissions from manure management for broiler chickens were 12.48 and $4.93Gg\;CO_2-eq/yr$, respectively. Annual direct and indirect $N_2O$ emissions for broiler chickens tended to decrease in 2014. Average $CO_2$ emission from direct on-farm energy uses for broiler and layer chickens were 46.62 and $136.56Gg\;CO_2-eq/yr$, respectively. For pig sectors, the $N_2O$ emission from direct and indirect sources gradually increased, but they decreased for breeding pigs. Carbon dioxide emission from direct on-farm energy uses reached a maximum of $53.93Gg\;CO_2-eq/yr$ in 2009, but this total gradually declined in 2010 and 2011. For boars, the greatest $CO_2$ emission occurred in 2012 and was $9.44Gg\;CO_2-eq/yr$. Indirect $N_2O$ emission was the largest component of GHG emissions in broilers. In layer chickens, the largest contributing factor to GHG emissions was $CO_2$ from direct on-farm energy uses. For pig production, the largest component of GHG emissions was $CH_4$ from manure management, followed by $CO_2$ emission from direct on-farm energy use and $CH_4$ enteric fermentation emission, which accounted for 8.47, 2.85, and $2.82Gg-CO_2/yr$, respectively. The greatest GHG emission intensity occurred in female breeding sows relative to boars. Overall, it is an important issue for the poultry and pig industry of South Korea to reduce GHG emissions with the effective approaches for the sustainability of agricultural practices.

The Relationship between Korea Agricultural Productions and Greenhouse Gas Emissions Using Environmental Kuznets Curve (환경쿠즈네츠곡선을 이용한 한국의 농업 생산과 온실가스 배출의 관계 분석)

  • Kang, Hyun-Soo
    • Asia-Pacific Journal of Business
    • /
    • v.12 no.1
    • /
    • pp.209-223
    • /
    • 2021
  • Purpose - The purpose of this study was to investigate the relationship between Korea agricultural productions and Greenhouse Gas (GHG) emissions based on Environmental Kuznets Curve (EKC) hypothesis. Design/methodology/approach - This study utilized time series data of economic growth, greenhouse gas, agricultural productions, trade dependency, and energy usages. In order to econometric procedure of EKC hypothesis, this study utilized unit root test and cointegration test to check staionarity of each variable and also adopted Vector Error Correction Model (VECM) and Ordinary Least Square (OLS) to analyze the short and long run relationships. Findings - In the short run, greenhouse gas emissions resulting from economic growth show an inverse U-shape relationship, and an increase in agricultural production and energy consumption led to increase in greenhouse gas emission. In the long run, total GHG emissions and CO2 emissions show an N-shaped relationship with economic growth, and an increase in agricultural production has resulted in a decrease in total GHG and CO2 emissions. However, methane (CH4) and nitrous oxide (N2O) emissions showed an inverse U-shape relationship with economic growth, which indicated the environment and production process of agricultural production. Research implications or Originality - Korea agricultural production has different effects on the GHG emission sources, and in particular, methane (CH4) and nitrous oxide (N2O) emissions show to increase as the agricultural production expansions, so policy or technological development in related sector is required. Especially, in the context of the 2030 GHG reduction road-map, if GHG-related reduction technologies or policies are spread, national GHG emission reduction targets can be achieved and this is possible to predict the decline in production in the sector and damage to the related industries.

CO2 Capture from the Petroleum Refining Industry (정유 산업에서의 온실가스 포집)

  • Hong, Yeon Ki
    • Journal of Institute of Convergence Technology
    • /
    • v.11 no.1
    • /
    • pp.13-18
    • /
    • 2021
  • It is widely accepted that the prevention of global warming requires significant reductions in greenhouse gases, particularly CO2 emissions. Although fossil fuel-based power plants account for the majority of CO2 emissions, it is urgent to reduce CO2 emissions in industries that emit large amounts of CO2 such as steel, petrochemical, and oil refining. This paper examines the current status of CO2 emission in the domestic oil refining industry and CO2 emission sources in each unit process in the oil refining industry. Focusing on the previously developed CO2 capture process, cases and applicability of greenhouse gas reduction in FCC and hydrogen manufacturing processes, which are major processes constituting the oil refining industry, are reviewed.

Analysis of Carbonation Reduction Coefficient and CO2 uptakes under Finishing Materials (표면마감 조건에 따른 탄산화감소계수 및 CO2 흡수량 산정)

  • Song, Hun;Shin, Hyeon-UK;Chu, Yong-Sik;Lee, Jong-Kyu;Cho, Hyung-Kyu;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.215-216
    • /
    • 2012
  • Emissions of CO2 occur during the production of cement manufacturing process. During the production of clinker, limestone is mainly calcium carbonate, is heated to produce lime and CO2 as a by-product. It has a major problem, CO2 uptake is not considered in concrete carbonation, just focus in CO2 emission. This study is to develop a simulation model for CO2 uptakes in concrete structures based on carbonation reduction coefficient considering finishing materials. CO2 uptakes unit of concrete cubic meter is calculated by CO2 emissions unit of concrete materials and usage of concrete materials in mix proportion. From the simulation result, CO2 uptake ratios is 2.04 percent in carbonation models of concrete structure during 40 years.

  • PDF

A Study on the Amount of Carbon Emission of Organic Materials through Life-Cycle Assessment (LCA) (전과정평과를 통한 유기농자재의 탄소배출량 산정연구 -유기질비료를 중심으로-)

  • Yoon, Sung-Yee;Kwon, Hyuk-Jun
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.1
    • /
    • pp.23-38
    • /
    • 2011
  • ● The current world is suffering abnormal climate caused by global warming. The main cause of global warming is greenhouse gas such as carbon dioxide. The carbon labeling system and carbon traceability system being pushed ahead in the agricultural sector is the policy for responding to climate change to reduce greenhouse gas emissions. To make this policy more effective and enhanced, the amount of carbon emissions should be calculated based on the kind of crops or the various businesses in the agricultural sector. Therefore, in order to estimate the accurate amount of carbon emissions, it is necessary to establish carbon dioxide emission intensity of various agricultural materials added onto the agriculture, and to calculate the amount of carbon dioxide emission for each crop according to agricultural production. The purpose of this study is to establish the amount of emission, emission per agricultural materials, of agricultural materials being added for crop production as a basic step, and emission intensity which can be used in the future market in order to estimate accurate amount of carbon emission in all the policies being promoted in the agricultural sector. Therefore, in this study, in order to build LCI D/B about organic fertilizers among many organic materials added onto the organic agriculture sector, one leading company in organic fertilizer production was selected and LCA was conducted for this leading company. We had to build the intensity and integrated average concept of intensity upon the two cases once production farmers for their own consumption and farms besides organic fertilizer company were categorized even if it's little amount. But in this study, individually produced organic fertilizers were excluded. Calculated results are following. Carbon emission of mixed expeller cake fertilizer in organic fertilizer was 1,106,966.89kg-$CO^2$ and emission intensity was 0.01606kg-$CO^2$, respectively. Total emission of mixed organic fertilizers was 241,523.2kg-$CO^2$ and emission intensity was 0.01705kg-$CO^2$. And total emission of organic compound fertilizers was 94,592.66kg-$CO^2$ and emission intensity was 0.01769kg-$CO^2$, respectively.

Development of Productivity-based Estimating Tool for Fuel Use and Emissions from Earthwork Construction Activities

  • Hajji, Apif M.;Lewis, Michael Phil
    • Journal of Construction Engineering and Project Management
    • /
    • v.3 no.2
    • /
    • pp.58-65
    • /
    • 2013
  • Earthwork activities are typically performed by heavy duty diesel (HDD) construction equipment that consumes large quantities of diesel fuel use and emits large quantities of pollutants, including nitrogen oxides (NOx), particulate matters (PM), hydrocarbon (HC), carbon monoxide (CO), and carbon dioxide ($CO_2$). This paper presents the framework for a model that can be used to estimate the production rate, activity duration, total fuel use, and total pollutants emissions for earthwork activities. A case study and sensitivity analysis for an excavator performing excavations are presented. The tool is developed by combining the multiple linear regressions (MLR) approach for modeling the productivity with the EPA's NONROAD model. The excavator data from RSMeans Heavy Construction Data were selected to build the productivity model, and emission factors of all type of pollutants from NONROAD model were used to estimate the total fuel use and emissions. The MLR model for the productivity rate can explain 92% of the variability in the data. Based on the model, the fuel use and emissions of excavator increase as the trench depth increase, but as the bucket size increase, the fuel use and emissions decrease.

A Study on the Potential of CO2 Emissions Reduction Recycled Aggregate according to Transportation Plan of Waste Concrete - Focused on Daegu City and Kyungpook Area - (폐콘크리트의 수송계획에 따른 순환골재의 CO2 배출량 저감 가능성에 관한 연구 - 대구·경북지역을 중심으로 -)

  • Kim, Tae Hyun;Cha, Gi Wook;Hong, Won Hwa
    • KIEAE Journal
    • /
    • v.14 no.1
    • /
    • pp.131-138
    • /
    • 2014
  • The recent interests in securing alternative resource have increased due to environmental issues and exhaustion of natural resources. The government notices production of recycled aggregate using waste concrete as the substitute of the natural aggregate. However, It's important to reduce environmental burden being inevitably made in the process producing recycled aggregate. In this study, the scenarios of transportation distance were set in the transportation phase of production of recycled aggregate. In addition, The possibility of emissions and reduction of carbon dioxide were studied depending on the scenarios. For this study, data about a amount of waste concrete, transportation distance, kind of vehicle, the number of required vehicle, fuel efficiency of vehicle and etc were gathered from 15 companies of intermediate treatment and 60 constructions sites located in Daegu city and Kyungpook area. Based on those data, fuel consumptions and $CO_2$ emissions according to the transportation scheme of waste concrete were calculated. As a result of the study, the emission of carbon dioxide was possible to be reduced by 27.8~75.4% depending on the scenarios of transportation distance.

Mixture Proportioning Approach for Low-CO2 Lightweight Aggregate Concrete based on the Replacement Level of Natural Sand (천연모래 치환율에 기반한 저탄소 경량골재 콘크리트 배합설계 모델)

  • Jung, Yeon-Back;Yang, Keun-Hyeok;Tae, Sung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.427-434
    • /
    • 2016
  • The purpose of this study is to propose a mixture proportioning approach based on the replacement level of natural sand for reducing $CO_2$ emissions from artificial lightweight aggregate concrete(LWAC) production. To assess the effect of natural sand on the reduction of $CO_2$ emissions and compressive strength of LWAC, a total of 379 specimens compiled from different sources were analyzed. Based on the non-linear regression analysis using the database and the previous mixture proportioning method proposed by Yang et al., simple equations were derived to determine the concrete mixture proportioning and the replacement level of natural sand for achieving the targeted performances(compressive strength, initial slump, air content, and $CO_2$ reduction ratio) of concrete. Furthermore, the proposed equations are practically applicable to straightforward determination of the $CO_2$ emissions from the provided mixture proportions of LWAC.